Metamath Proof Explorer


Theorem mapdpglem12

Description: Lemma for mapdpg . TODO: Can some commonality with mapdpglem6 through mapdpglem11 be exploited? Also, some consolidation of small lemmas here could be done. (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
mapdpglem4.z 0˙=0A
mapdpglem4.g4 φgB
mapdpglem4.z4 φzMNY
mapdpglem4.t4 φt=g·˙GRz
mapdpglem4.xn φXQ
mapdpglem12.yn φYQ
mapdpglem12.g0 φz=0C
Assertion mapdpglem12 φtMNX

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 mapdpglem4.z 0˙=0A
25 mapdpglem4.g4 φgB
26 mapdpglem4.z4 φzMNY
27 mapdpglem4.t4 φt=g·˙GRz
28 mapdpglem4.xn φXQ
29 mapdpglem12.yn φYQ
30 mapdpglem12.g0 φz=0C
31 1 7 8 lcdlmod φCLMod
32 eqid LSubSpU=LSubSpU
33 eqid LSubSpC=LSubSpC
34 1 3 8 dvhlmod φULMod
35 4 32 6 lspsncl ULModXVNXLSubSpU
36 34 9 35 syl2anc φNXLSubSpU
37 1 2 3 32 7 33 8 36 mapdcl2 φMNXLSubSpC
38 13 12 lspsnid CLModGFGJG
39 31 19 38 syl2anc φGJG
40 39 20 eleqtrrd φGMNX
41 1 3 15 16 7 13 17 33 8 37 25 40 lcdlssvscl φg·˙GMNX
42 eqid 0C=0C
43 42 33 lss0cl CLModMNXLSubSpC0CMNX
44 31 37 43 syl2anc φ0CMNX
45 30 44 eqeltrd φzMNX
46 18 33 lssvsubcl CLModMNXLSubSpCg·˙GMNXzMNXg·˙GRzMNX
47 31 37 41 45 46 syl22anc φg·˙GRzMNX
48 27 47 eqeltrd φtMNX