Metamath Proof Explorer


Theorem mapdpglem12

Description: Lemma for mapdpg . TODO: Can some commonality with mapdpglem6 through mapdpglem11 be exploited? Also, some consolidation of small lemmas here could be done. (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
mapdpglem2.j J = LSpan C
mapdpglem3.f F = Base C
mapdpglem3.te φ t M N X ˙ M N Y
mapdpglem3.a A = Scalar U
mapdpglem3.b B = Base A
mapdpglem3.t · ˙ = C
mapdpglem3.r R = - C
mapdpglem3.g φ G F
mapdpglem3.e φ M N X = J G
mapdpglem4.q Q = 0 U
mapdpglem.ne φ N X N Y
mapdpglem4.jt φ M N X - ˙ Y = J t
mapdpglem4.z 0 ˙ = 0 A
mapdpglem4.g4 φ g B
mapdpglem4.z4 φ z M N Y
mapdpglem4.t4 φ t = g · ˙ G R z
mapdpglem4.xn φ X Q
mapdpglem12.yn φ Y Q
mapdpglem12.g0 φ z = 0 C
Assertion mapdpglem12 φ t M N X

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 mapdpglem2.j J = LSpan C
13 mapdpglem3.f F = Base C
14 mapdpglem3.te φ t M N X ˙ M N Y
15 mapdpglem3.a A = Scalar U
16 mapdpglem3.b B = Base A
17 mapdpglem3.t · ˙ = C
18 mapdpglem3.r R = - C
19 mapdpglem3.g φ G F
20 mapdpglem3.e φ M N X = J G
21 mapdpglem4.q Q = 0 U
22 mapdpglem.ne φ N X N Y
23 mapdpglem4.jt φ M N X - ˙ Y = J t
24 mapdpglem4.z 0 ˙ = 0 A
25 mapdpglem4.g4 φ g B
26 mapdpglem4.z4 φ z M N Y
27 mapdpglem4.t4 φ t = g · ˙ G R z
28 mapdpglem4.xn φ X Q
29 mapdpglem12.yn φ Y Q
30 mapdpglem12.g0 φ z = 0 C
31 1 7 8 lcdlmod φ C LMod
32 eqid LSubSp U = LSubSp U
33 eqid LSubSp C = LSubSp C
34 1 3 8 dvhlmod φ U LMod
35 4 32 6 lspsncl U LMod X V N X LSubSp U
36 34 9 35 syl2anc φ N X LSubSp U
37 1 2 3 32 7 33 8 36 mapdcl2 φ M N X LSubSp C
38 13 12 lspsnid C LMod G F G J G
39 31 19 38 syl2anc φ G J G
40 39 20 eleqtrrd φ G M N X
41 1 3 15 16 7 13 17 33 8 37 25 40 lcdlssvscl φ g · ˙ G M N X
42 eqid 0 C = 0 C
43 42 33 lss0cl C LMod M N X LSubSp C 0 C M N X
44 31 37 43 syl2anc φ 0 C M N X
45 30 44 eqeltrd φ z M N X
46 18 33 lssvsubcl C LMod M N X LSubSp C g · ˙ G M N X z M N X g · ˙ G R z M N X
47 31 37 41 45 46 syl22anc φ g · ˙ G R z M N X
48 27 47 eqeltrd φ t M N X