Description: Lemma for mapdpg . Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d t ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 15-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpglem.h | |
|
mapdpglem.m | |
||
mapdpglem.u | |
||
mapdpglem.v | |
||
mapdpglem.s | |
||
mapdpglem.n | |
||
mapdpglem.c | |
||
mapdpglem.k | |
||
mapdpglem.x | |
||
mapdpglem.y | |
||
mapdpglem1.p | |
||
mapdpglem2.j | |
||
Assertion | mapdpglem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | |
|
2 | mapdpglem.m | |
|
3 | mapdpglem.u | |
|
4 | mapdpglem.v | |
|
5 | mapdpglem.s | |
|
6 | mapdpglem.n | |
|
7 | mapdpglem.c | |
|
8 | mapdpglem.k | |
|
9 | mapdpglem.x | |
|
10 | mapdpglem.y | |
|
11 | mapdpglem1.p | |
|
12 | mapdpglem2.j | |
|
13 | eqid | |
|
14 | 1 3 8 | dvhlmod | |
15 | 4 5 | lmodvsubcl | |
16 | 14 9 10 15 | syl3anc | |
17 | 1 2 3 4 6 7 13 12 8 16 | mapdspex | |
18 | 1 7 8 | lcdlmod | |
19 | 13 12 | lspsnid | |
20 | 18 19 | sylan | |
21 | 20 | adantrr | |
22 | simprr | |
|
23 | 21 22 | eleqtrrd | |
24 | 17 23 22 | reximssdv | |
25 | 1 2 3 4 5 6 7 8 9 10 11 | mapdpglem1 | |
26 | 25 | sseld | |
27 | 26 | anim1d | |
28 | 27 | reximdv2 | |
29 | 24 28 | mpd | |