Metamath Proof Explorer


Theorem mapdpglem2

Description: Lemma for mapdpg . Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d t ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
Assertion mapdpglem2 φtMNX˙MNYMNX-˙Y=Jt

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 eqid BaseC=BaseC
14 1 3 8 dvhlmod φULMod
15 4 5 lmodvsubcl ULModXVYVX-˙YV
16 14 9 10 15 syl3anc φX-˙YV
17 1 2 3 4 6 7 13 12 8 16 mapdspex φtBaseCMNX-˙Y=Jt
18 1 7 8 lcdlmod φCLMod
19 13 12 lspsnid CLModtBaseCtJt
20 18 19 sylan φtBaseCtJt
21 20 adantrr φtBaseCMNX-˙Y=JttJt
22 simprr φtBaseCMNX-˙Y=JtMNX-˙Y=Jt
23 21 22 eleqtrrd φtBaseCMNX-˙Y=JttMNX-˙Y
24 17 23 22 reximssdv φtMNX-˙YMNX-˙Y=Jt
25 1 2 3 4 5 6 7 8 9 10 11 mapdpglem1 φMNX-˙YMNX˙MNY
26 25 sseld φtMNX-˙YtMNX˙MNY
27 26 anim1d φtMNX-˙YMNX-˙Y=JttMNX˙MNYMNX-˙Y=Jt
28 27 reximdv2 φtMNX-˙YMNX-˙Y=JttMNX˙MNYMNX-˙Y=Jt
29 24 28 mpd φtMNX˙MNYMNX-˙Y=Jt