Description: Lemma for mapdpg . Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpg.h | |
|
mapdpg.m | |
||
mapdpg.u | |
||
mapdpg.v | |
||
mapdpg.s | |
||
mapdpg.z | |
||
mapdpg.n | |
||
mapdpg.c | |
||
mapdpg.f | |
||
mapdpg.r | |
||
mapdpg.j | |
||
mapdpg.k | |
||
mapdpg.x | |
||
mapdpg.y | |
||
mapdpg.g | |
||
mapdpg.ne | |
||
mapdpg.e | |
||
mapdpgem25.h1 | |
||
mapdpgem25.i1 | |
||
mapdpglem26.a | |
||
mapdpglem26.b | |
||
mapdpglem26.t | |
||
mapdpglem26.o | |
||
mapdpglem28.ve | |
||
mapdpglem28.u1 | |
||
mapdpglem28.u2 | |
||
mapdpglem28.ue | |
||
Assertion | mapdpglem31 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpg.h | |
|
2 | mapdpg.m | |
|
3 | mapdpg.u | |
|
4 | mapdpg.v | |
|
5 | mapdpg.s | |
|
6 | mapdpg.z | |
|
7 | mapdpg.n | |
|
8 | mapdpg.c | |
|
9 | mapdpg.f | |
|
10 | mapdpg.r | |
|
11 | mapdpg.j | |
|
12 | mapdpg.k | |
|
13 | mapdpg.x | |
|
14 | mapdpg.y | |
|
15 | mapdpg.g | |
|
16 | mapdpg.ne | |
|
17 | mapdpg.e | |
|
18 | mapdpgem25.h1 | |
|
19 | mapdpgem25.i1 | |
|
20 | mapdpglem26.a | |
|
21 | mapdpglem26.b | |
|
22 | mapdpglem26.t | |
|
23 | mapdpglem26.o | |
|
24 | mapdpglem28.ve | |
|
25 | mapdpglem28.u1 | |
|
26 | mapdpglem28.u2 | |
|
27 | mapdpglem28.ue | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | 1 3 20 28 8 29 30 12 | lcd1 | |
32 | 31 | oveq1d | |
33 | 1 8 12 | lcdlmod | |
34 | 19 | simpld | |
35 | 9 29 22 30 | lmodvs1 | |
36 | 33 34 35 | syl2anc | |
37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | mapdpglem30 | |
38 | eqtr2 | |
|
39 | 37 38 | syl | |
40 | 39 | oveq1d | |
41 | 32 36 40 | 3eqtr3rd | |
42 | 25 41 | eqtrd | |