Metamath Proof Explorer


Theorem mapdpglem31

Description: Lemma for mapdpg . Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
mapdpglem26.a A=ScalarU
mapdpglem26.b B=BaseA
mapdpglem26.t ·˙=C
mapdpglem26.o O=0A
mapdpglem28.ve φvB
mapdpglem28.u1 φh=u·˙i
mapdpglem28.u2 φGRh=v·˙GRi
mapdpglem28.ue φuB
Assertion mapdpglem31 φh=i

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
19 mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
20 mapdpglem26.a A=ScalarU
21 mapdpglem26.b B=BaseA
22 mapdpglem26.t ·˙=C
23 mapdpglem26.o O=0A
24 mapdpglem28.ve φvB
25 mapdpglem28.u1 φh=u·˙i
26 mapdpglem28.u2 φGRh=v·˙GRi
27 mapdpglem28.ue φuB
28 eqid 1A=1A
29 eqid ScalarC=ScalarC
30 eqid 1ScalarC=1ScalarC
31 1 3 20 28 8 29 30 12 lcd1 φ1ScalarC=1A
32 31 oveq1d φ1ScalarC·˙i=1A·˙i
33 1 8 12 lcdlmod φCLMod
34 19 simpld φiF
35 9 29 22 30 lmodvs1 CLModiF1ScalarC·˙i=i
36 33 34 35 syl2anc φ1ScalarC·˙i=i
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 mapdpglem30 φv=1Av=u
38 eqtr2 v=1Av=u1A=u
39 37 38 syl φ1A=u
40 39 oveq1d φ1A·˙i=u·˙i
41 32 36 40 3eqtr3rd φu·˙i=i
42 25 41 eqtrd φh=i