Metamath Proof Explorer


Theorem mapdpglem8

Description: Lemma for mapdpg . Baer p. 45, line 4: "...so that (F(x-y))* <= (Fy)*. This would imply that F(x-y) <= F(y)..." (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
mapdpglem2.j J = LSpan C
mapdpglem3.f F = Base C
mapdpglem3.te φ t M N X ˙ M N Y
mapdpglem3.a A = Scalar U
mapdpglem3.b B = Base A
mapdpglem3.t · ˙ = C
mapdpglem3.r R = - C
mapdpglem3.g φ G F
mapdpglem3.e φ M N X = J G
mapdpglem4.q Q = 0 U
mapdpglem.ne φ N X N Y
mapdpglem4.jt φ M N X - ˙ Y = J t
mapdpglem4.z 0 ˙ = 0 A
mapdpglem4.g4 φ g B
mapdpglem4.z4 φ z M N Y
mapdpglem4.t4 φ t = g · ˙ G R z
mapdpglem4.xn φ X Q
mapdpglem4.g0 φ g = 0 ˙
Assertion mapdpglem8 φ N X - ˙ Y N Y

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 mapdpglem2.j J = LSpan C
13 mapdpglem3.f F = Base C
14 mapdpglem3.te φ t M N X ˙ M N Y
15 mapdpglem3.a A = Scalar U
16 mapdpglem3.b B = Base A
17 mapdpglem3.t · ˙ = C
18 mapdpglem3.r R = - C
19 mapdpglem3.g φ G F
20 mapdpglem3.e φ M N X = J G
21 mapdpglem4.q Q = 0 U
22 mapdpglem.ne φ N X N Y
23 mapdpglem4.jt φ M N X - ˙ Y = J t
24 mapdpglem4.z 0 ˙ = 0 A
25 mapdpglem4.g4 φ g B
26 mapdpglem4.z4 φ z M N Y
27 mapdpglem4.t4 φ t = g · ˙ G R z
28 mapdpglem4.xn φ X Q
29 mapdpglem4.g0 φ g = 0 ˙
30 eqid LSubSp C = LSubSp C
31 1 7 8 lcdlmod φ C LMod
32 eqid LSubSp U = LSubSp U
33 1 3 8 dvhlmod φ U LMod
34 4 32 6 lspsncl U LMod Y V N Y LSubSp U
35 33 10 34 syl2anc φ N Y LSubSp U
36 1 2 3 32 7 30 8 35 mapdcl2 φ M N Y LSubSp C
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 mapdpglem6 φ t M N Y
38 30 12 31 36 37 lspsnel5a φ J t M N Y
39 23 38 eqsstrd φ M N X - ˙ Y M N Y
40 4 5 lmodvsubcl U LMod X V Y V X - ˙ Y V
41 33 9 10 40 syl3anc φ X - ˙ Y V
42 4 32 6 lspsncl U LMod X - ˙ Y V N X - ˙ Y LSubSp U
43 33 41 42 syl2anc φ N X - ˙ Y LSubSp U
44 1 3 32 2 8 43 35 mapdord φ M N X - ˙ Y M N Y N X - ˙ Y N Y
45 39 44 mpbid φ N X - ˙ Y N Y