Metamath Proof Explorer


Theorem mapsnend

Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Revised by Mario Carneiro, 15-Nov-2014) (Revised by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses mapsnend.a φAV
mapsnend.b φBW
Assertion mapsnend φABA

Proof

Step Hyp Ref Expression
1 mapsnend.a φAV
2 mapsnend.b φBW
3 ovexd φABV
4 fvexd zABzBV
5 4 a1i φzABzBV
6 snex BwV
7 6 2a1i φwABwV
8 1 2 mapsnd φAB=z|yAz=By
9 8 eqabrd φzAByAz=By
10 9 anbi1d φzABw=zByAz=Byw=zB
11 r19.41v yAz=Byw=zByAz=Byw=zB
12 11 bicomi yAz=Byw=zByAz=Byw=zB
13 12 a1i φyAz=Byw=zByAz=Byw=zB
14 df-rex yAz=Byw=zByyAz=Byw=zB
15 14 a1i φyAz=Byw=zByyAz=Byw=zB
16 10 13 15 3bitrd φzABw=zByyAz=Byw=zB
17 fveq1 z=ByzB=ByB
18 vex yV
19 fvsng BWyVByB=y
20 2 18 19 sylancl φByB=y
21 17 20 sylan9eqr φz=ByzB=y
22 21 eqeq2d φz=Byw=zBw=y
23 equcom w=yy=w
24 22 23 bitrdi φz=Byw=zBy=w
25 24 pm5.32da φz=Byw=zBz=Byy=w
26 25 anbi2d φyAz=Byw=zByAz=Byy=w
27 anass yAz=Byy=wyAz=Byy=w
28 27 a1i φyAz=Byy=wyAz=Byy=w
29 ancom yAz=Byy=wy=wyAz=By
30 29 a1i φyAz=Byy=wy=wyAz=By
31 26 28 30 3bitr2d φyAz=Byw=zBy=wyAz=By
32 31 exbidv φyyAz=Byw=zByy=wyAz=By
33 eleq1w y=wyAwA
34 opeq2 y=wBy=Bw
35 34 sneqd y=wBy=Bw
36 35 eqeq2d y=wz=Byz=Bw
37 33 36 anbi12d y=wyAz=BywAz=Bw
38 37 equsexvw yy=wyAz=BywAz=Bw
39 38 a1i φyy=wyAz=BywAz=Bw
40 16 32 39 3bitrd φzABw=zBwAz=Bw
41 3 1 5 7 40 en2d φABA