Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Revised by Mario Carneiro, 15-Nov-2014) (Revised by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapsnend.a | |
|
mapsnend.b | |
||
Assertion | mapsnend | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsnend.a | |
|
2 | mapsnend.b | |
|
3 | ovexd | |
|
4 | fvexd | |
|
5 | 4 | a1i | |
6 | snex | |
|
7 | 6 | 2a1i | |
8 | 1 2 | mapsnd | |
9 | 8 | eqabrd | |
10 | 9 | anbi1d | |
11 | r19.41v | |
|
12 | 11 | bicomi | |
13 | 12 | a1i | |
14 | df-rex | |
|
15 | 14 | a1i | |
16 | 10 13 15 | 3bitrd | |
17 | fveq1 | |
|
18 | vex | |
|
19 | fvsng | |
|
20 | 2 18 19 | sylancl | |
21 | 17 20 | sylan9eqr | |
22 | 21 | eqeq2d | |
23 | equcom | |
|
24 | 22 23 | bitrdi | |
25 | 24 | pm5.32da | |
26 | 25 | anbi2d | |
27 | anass | |
|
28 | 27 | a1i | |
29 | ancom | |
|
30 | 29 | a1i | |
31 | 26 28 30 | 3bitr2d | |
32 | 31 | exbidv | |
33 | eleq1w | |
|
34 | opeq2 | |
|
35 | 34 | sneqd | |
36 | 35 | eqeq2d | |
37 | 33 36 | anbi12d | |
38 | 37 | equsexvw | |
39 | 38 | a1i | |
40 | 16 32 39 | 3bitrd | |
41 | 3 1 5 7 40 | en2d | |