Description: The matrix transformation is a 1-1 function from the matrices to the polynomial matrices. (Contributed by AV, 28-Oct-2019) (Proof shortened by AV, 27-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mat2pmatbas.t | |
|
mat2pmatbas.a | |
||
mat2pmatbas.b | |
||
mat2pmatbas.p | |
||
mat2pmatbas.c | |
||
mat2pmatbas0.h | |
||
Assertion | mat2pmatf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatbas.t | |
|
2 | mat2pmatbas.a | |
|
3 | mat2pmatbas.b | |
|
4 | mat2pmatbas.p | |
|
5 | mat2pmatbas.c | |
|
6 | mat2pmatbas0.h | |
|
7 | 1 2 3 4 5 6 | mat2pmatf | |
8 | simpl | |
|
9 | 8 | anim2i | |
10 | df-3an | |
|
11 | 9 10 | sylibr | |
12 | eqid | |
|
13 | 1 2 3 4 12 | mat2pmatvalel | |
14 | 11 13 | sylan | |
15 | simpr | |
|
16 | 15 | anim2i | |
17 | df-3an | |
|
18 | 16 17 | sylibr | |
19 | 1 2 3 4 12 | mat2pmatvalel | |
20 | 18 19 | sylan | |
21 | 14 20 | eqeq12d | |
22 | eqid | |
|
23 | eqid | |
|
24 | 4 12 22 23 | ply1sclf1 | |
25 | 24 | ad3antlr | |
26 | simprl | |
|
27 | simprr | |
|
28 | simplrl | |
|
29 | 2 22 3 26 27 28 | matecld | |
30 | simplrr | |
|
31 | 2 22 3 26 27 30 | matecld | |
32 | f1veqaeq | |
|
33 | 25 29 31 32 | syl12anc | |
34 | 21 33 | sylbid | |
35 | 34 | ralimdvva | |
36 | 1 2 3 4 5 6 | mat2pmatbas0 | |
37 | 11 36 | syl | |
38 | 1 2 3 4 5 6 | mat2pmatbas0 | |
39 | 18 38 | syl | |
40 | 5 6 | eqmat | |
41 | 37 39 40 | syl2anc | |
42 | 2 3 | eqmat | |
43 | 42 | adantl | |
44 | 35 41 43 | 3imtr4d | |
45 | 44 | ralrimivva | |
46 | dff13 | |
|
47 | 7 45 46 | sylanbrc | |