Metamath Proof Explorer


Theorem mat2pmatf1

Description: The matrix transformation is a 1-1 function from the matrices to the polynomial matrices. (Contributed by AV, 28-Oct-2019) (Proof shortened by AV, 27-Nov-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
mat2pmatbas0.h H=BaseC
Assertion mat2pmatf1 NFinRRingT:B1-1H

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 mat2pmatbas0.h H=BaseC
7 1 2 3 4 5 6 mat2pmatf NFinRRingT:BH
8 simpl xByBxB
9 8 anim2i NFinRRingxByBNFinRRingxB
10 df-3an NFinRRingxBNFinRRingxB
11 9 10 sylibr NFinRRingxByBNFinRRingxB
12 eqid algScP=algScP
13 1 2 3 4 12 mat2pmatvalel NFinRRingxBiNjNiTxj=algScPixj
14 11 13 sylan NFinRRingxByBiNjNiTxj=algScPixj
15 simpr xByByB
16 15 anim2i NFinRRingxByBNFinRRingyB
17 df-3an NFinRRingyBNFinRRingyB
18 16 17 sylibr NFinRRingxByBNFinRRingyB
19 1 2 3 4 12 mat2pmatvalel NFinRRingyBiNjNiTyj=algScPiyj
20 18 19 sylan NFinRRingxByBiNjNiTyj=algScPiyj
21 14 20 eqeq12d NFinRRingxByBiNjNiTxj=iTyjalgScPixj=algScPiyj
22 eqid BaseR=BaseR
23 eqid BaseP=BaseP
24 4 12 22 23 ply1sclf1 RRingalgScP:BaseR1-1BaseP
25 24 ad3antlr NFinRRingxByBiNjNalgScP:BaseR1-1BaseP
26 simprl NFinRRingxByBiNjNiN
27 simprr NFinRRingxByBiNjNjN
28 simplrl NFinRRingxByBiNjNxB
29 2 22 3 26 27 28 matecld NFinRRingxByBiNjNixjBaseR
30 simplrr NFinRRingxByBiNjNyB
31 2 22 3 26 27 30 matecld NFinRRingxByBiNjNiyjBaseR
32 f1veqaeq algScP:BaseR1-1BasePixjBaseRiyjBaseRalgScPixj=algScPiyjixj=iyj
33 25 29 31 32 syl12anc NFinRRingxByBiNjNalgScPixj=algScPiyjixj=iyj
34 21 33 sylbid NFinRRingxByBiNjNiTxj=iTyjixj=iyj
35 34 ralimdvva NFinRRingxByBiNjNiTxj=iTyjiNjNixj=iyj
36 1 2 3 4 5 6 mat2pmatbas0 NFinRRingxBTxH
37 11 36 syl NFinRRingxByBTxH
38 1 2 3 4 5 6 mat2pmatbas0 NFinRRingyBTyH
39 18 38 syl NFinRRingxByBTyH
40 5 6 eqmat TxHTyHTx=TyiNjNiTxj=iTyj
41 37 39 40 syl2anc NFinRRingxByBTx=TyiNjNiTxj=iTyj
42 2 3 eqmat xByBx=yiNjNixj=iyj
43 42 adantl NFinRRingxByBx=yiNjNixj=iyj
44 35 41 43 3imtr4d NFinRRingxByBTx=Tyx=y
45 44 ralrimivva NFinRRingxByBTx=Tyx=y
46 dff13 T:B1-1HT:BHxByBTx=Tyx=y
47 7 45 46 sylanbrc NFinRRingT:B1-1H