| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatbas.t |  | 
						
							| 2 |  | mat2pmatbas.a |  | 
						
							| 3 |  | mat2pmatbas.b |  | 
						
							| 4 |  | mat2pmatbas.p |  | 
						
							| 5 |  | mat2pmatbas.c |  | 
						
							| 6 |  | mat2pmatbas0.h |  | 
						
							| 7 | 1 2 3 4 5 6 | mat2pmatf |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 | 8 | anim2i |  | 
						
							| 10 |  | df-3an |  | 
						
							| 11 | 9 10 | sylibr |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 2 3 4 12 | mat2pmatvalel |  | 
						
							| 14 | 11 13 | sylan |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 15 | anim2i |  | 
						
							| 17 |  | df-3an |  | 
						
							| 18 | 16 17 | sylibr |  | 
						
							| 19 | 1 2 3 4 12 | mat2pmatvalel |  | 
						
							| 20 | 18 19 | sylan |  | 
						
							| 21 | 14 20 | eqeq12d |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 4 12 22 23 | ply1sclf1 |  | 
						
							| 25 | 24 | ad3antlr |  | 
						
							| 26 |  | simprl |  | 
						
							| 27 |  | simprr |  | 
						
							| 28 |  | simplrl |  | 
						
							| 29 | 2 22 3 26 27 28 | matecld |  | 
						
							| 30 |  | simplrr |  | 
						
							| 31 | 2 22 3 26 27 30 | matecld |  | 
						
							| 32 |  | f1veqaeq |  | 
						
							| 33 | 25 29 31 32 | syl12anc |  | 
						
							| 34 | 21 33 | sylbid |  | 
						
							| 35 | 34 | ralimdvva |  | 
						
							| 36 | 1 2 3 4 5 6 | mat2pmatbas0 |  | 
						
							| 37 | 11 36 | syl |  | 
						
							| 38 | 1 2 3 4 5 6 | mat2pmatbas0 |  | 
						
							| 39 | 18 38 | syl |  | 
						
							| 40 | 5 6 | eqmat |  | 
						
							| 41 | 37 39 40 | syl2anc |  | 
						
							| 42 | 2 3 | eqmat |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 | 35 41 43 | 3imtr4d |  | 
						
							| 45 | 44 | ralrimivva |  | 
						
							| 46 |  | dff13 |  | 
						
							| 47 | 7 45 46 | sylanbrc |  |