Metamath Proof Explorer


Theorem mat2pmatmhm

Description: The transformation of matrices into polynomial matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 29-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
mat2pmatbas0.h H=BaseC
Assertion mat2pmatmhm NFinRCRingTmulGrpAMndHommulGrpC

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 mat2pmatbas0.h H=BaseC
7 crngring RCRingRRing
8 2 matring NFinRRingARing
9 7 8 sylan2 NFinRCRingARing
10 eqid mulGrpA=mulGrpA
11 10 ringmgp ARingmulGrpAMnd
12 9 11 syl NFinRCRingmulGrpAMnd
13 4 ply1ring RRingPRing
14 7 13 syl RCRingPRing
15 5 matring NFinPRingCRing
16 14 15 sylan2 NFinRCRingCRing
17 eqid mulGrpC=mulGrpC
18 17 ringmgp CRingmulGrpCMnd
19 16 18 syl NFinRCRingmulGrpCMnd
20 1 2 3 4 5 6 mat2pmatf NFinRRingT:BH
21 7 20 sylan2 NFinRCRingT:BH
22 1 2 3 4 5 6 mat2pmatmul NFinRCRingxByBTxAy=TxCTy
23 1 2 3 4 5 6 mat2pmat1 NFinRRingT1A=1C
24 7 23 sylan2 NFinRCRingT1A=1C
25 21 22 24 3jca NFinRCRingT:BHxByBTxAy=TxCTyT1A=1C
26 10 3 mgpbas B=BasemulGrpA
27 17 6 mgpbas H=BasemulGrpC
28 eqid A=A
29 10 28 mgpplusg A=+mulGrpA
30 eqid C=C
31 17 30 mgpplusg C=+mulGrpC
32 eqid 1A=1A
33 10 32 ringidval 1A=0mulGrpA
34 eqid 1C=1C
35 17 34 ringidval 1C=0mulGrpC
36 26 27 29 31 33 35 ismhm TmulGrpAMndHommulGrpCmulGrpAMndmulGrpCMndT:BHxByBTxAy=TxCTyT1A=1C
37 12 19 25 36 syl21anbrc NFinRCRingTmulGrpAMndHommulGrpC