Metamath Proof Explorer


Theorem mat2pmatmhm

Description: The transformation of matrices into polynomial matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 29-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T = N matToPolyMat R
mat2pmatbas.a A = N Mat R
mat2pmatbas.b B = Base A
mat2pmatbas.p P = Poly 1 R
mat2pmatbas.c C = N Mat P
mat2pmatbas0.h H = Base C
Assertion mat2pmatmhm N Fin R CRing T mulGrp A MndHom mulGrp C

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T = N matToPolyMat R
2 mat2pmatbas.a A = N Mat R
3 mat2pmatbas.b B = Base A
4 mat2pmatbas.p P = Poly 1 R
5 mat2pmatbas.c C = N Mat P
6 mat2pmatbas0.h H = Base C
7 crngring R CRing R Ring
8 2 matring N Fin R Ring A Ring
9 7 8 sylan2 N Fin R CRing A Ring
10 eqid mulGrp A = mulGrp A
11 10 ringmgp A Ring mulGrp A Mnd
12 9 11 syl N Fin R CRing mulGrp A Mnd
13 4 ply1ring R Ring P Ring
14 7 13 syl R CRing P Ring
15 5 matring N Fin P Ring C Ring
16 14 15 sylan2 N Fin R CRing C Ring
17 eqid mulGrp C = mulGrp C
18 17 ringmgp C Ring mulGrp C Mnd
19 16 18 syl N Fin R CRing mulGrp C Mnd
20 1 2 3 4 5 6 mat2pmatf N Fin R Ring T : B H
21 7 20 sylan2 N Fin R CRing T : B H
22 1 2 3 4 5 6 mat2pmatmul N Fin R CRing x B y B T x A y = T x C T y
23 1 2 3 4 5 6 mat2pmat1 N Fin R Ring T 1 A = 1 C
24 7 23 sylan2 N Fin R CRing T 1 A = 1 C
25 21 22 24 3jca N Fin R CRing T : B H x B y B T x A y = T x C T y T 1 A = 1 C
26 10 3 mgpbas B = Base mulGrp A
27 17 6 mgpbas H = Base mulGrp C
28 eqid A = A
29 10 28 mgpplusg A = + mulGrp A
30 eqid C = C
31 17 30 mgpplusg C = + mulGrp C
32 eqid 1 A = 1 A
33 10 32 ringidval 1 A = 0 mulGrp A
34 eqid 1 C = 1 C
35 17 34 ringidval 1 C = 0 mulGrp C
36 26 27 29 31 33 35 ismhm T mulGrp A MndHom mulGrp C mulGrp A Mnd mulGrp C Mnd T : B H x B y B T x A y = T x C T y T 1 A = 1 C
37 12 19 25 36 syl21anbrc N Fin R CRing T mulGrp A MndHom mulGrp C