Description: The transformation of matrices into polynomial matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 29-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mat2pmatbas.t | |
|
mat2pmatbas.a | |
||
mat2pmatbas.b | |
||
mat2pmatbas.p | |
||
mat2pmatbas.c | |
||
mat2pmatbas0.h | |
||
Assertion | mat2pmatmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatbas.t | |
|
2 | mat2pmatbas.a | |
|
3 | mat2pmatbas.b | |
|
4 | mat2pmatbas.p | |
|
5 | mat2pmatbas.c | |
|
6 | mat2pmatbas0.h | |
|
7 | crngring | |
|
8 | 2 | matring | |
9 | 7 8 | sylan2 | |
10 | eqid | |
|
11 | 10 | ringmgp | |
12 | 9 11 | syl | |
13 | 4 | ply1ring | |
14 | 7 13 | syl | |
15 | 5 | matring | |
16 | 14 15 | sylan2 | |
17 | eqid | |
|
18 | 17 | ringmgp | |
19 | 16 18 | syl | |
20 | 1 2 3 4 5 6 | mat2pmatf | |
21 | 7 20 | sylan2 | |
22 | 1 2 3 4 5 6 | mat2pmatmul | |
23 | 1 2 3 4 5 6 | mat2pmat1 | |
24 | 7 23 | sylan2 | |
25 | 21 22 24 | 3jca | |
26 | 10 3 | mgpbas | |
27 | 17 6 | mgpbas | |
28 | eqid | |
|
29 | 10 28 | mgpplusg | |
30 | eqid | |
|
31 | 17 30 | mgpplusg | |
32 | eqid | |
|
33 | 10 32 | ringidval | |
34 | eqid | |
|
35 | 17 34 | ringidval | |
36 | 26 27 29 31 33 35 | ismhm | |
37 | 12 19 25 36 | syl21anbrc | |