Metamath Proof Explorer


Theorem mbfimaicc

Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion mbfimaicc F MblFn F : A B C F -1 B C dom vol

Proof

Step Hyp Ref Expression
1 iccssre B C B C
2 1 adantl F MblFn F : A B C B C
3 dfss4 B C B C = B C
4 2 3 sylib F MblFn F : A B C B C = B C
5 difreicc B C B C = −∞ B C +∞
6 5 adantl F MblFn F : A B C B C = −∞ B C +∞
7 6 difeq2d F MblFn F : A B C B C = −∞ B C +∞
8 4 7 eqtr3d F MblFn F : A B C B C = −∞ B C +∞
9 8 imaeq2d F MblFn F : A B C F -1 B C = F -1 −∞ B C +∞
10 ffun F : A Fun F
11 funcnvcnv Fun F Fun F -1 -1
12 10 11 syl F : A Fun F -1 -1
13 12 ad2antlr F MblFn F : A B C Fun F -1 -1
14 imadif Fun F -1 -1 F -1 −∞ B C +∞ = F -1 F -1 −∞ B C +∞
15 13 14 syl F MblFn F : A B C F -1 −∞ B C +∞ = F -1 F -1 −∞ B C +∞
16 9 15 eqtrd F MblFn F : A B C F -1 B C = F -1 F -1 −∞ B C +∞
17 fimacnv F : A F -1 = A
18 17 adantl F MblFn F : A F -1 = A
19 mbfdm F MblFn dom F dom vol
20 fdm F : A dom F = A
21 20 eleq1d F : A dom F dom vol A dom vol
22 21 biimpac dom F dom vol F : A A dom vol
23 19 22 sylan F MblFn F : A A dom vol
24 18 23 eqeltrd F MblFn F : A F -1 dom vol
25 imaundi F -1 −∞ B C +∞ = F -1 −∞ B F -1 C +∞
26 mbfima F MblFn F : A F -1 −∞ B dom vol
27 mbfima F MblFn F : A F -1 C +∞ dom vol
28 unmbl F -1 −∞ B dom vol F -1 C +∞ dom vol F -1 −∞ B F -1 C +∞ dom vol
29 26 27 28 syl2anc F MblFn F : A F -1 −∞ B F -1 C +∞ dom vol
30 25 29 eqeltrid F MblFn F : A F -1 −∞ B C +∞ dom vol
31 difmbl F -1 dom vol F -1 −∞ B C +∞ dom vol F -1 F -1 −∞ B C +∞ dom vol
32 24 30 31 syl2anc F MblFn F : A F -1 F -1 −∞ B C +∞ dom vol
33 32 adantr F MblFn F : A B C F -1 F -1 −∞ B C +∞ dom vol
34 16 33 eqeltrd F MblFn F : A B C F -1 B C dom vol