Description: Binary relation expressing the modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mdbr4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdbr2 | |
|
2 | chincl | |
|
3 | inss2 | |
|
4 | sseq1 | |
|
5 | oveq1 | |
|
6 | 5 | ineq1d | |
7 | oveq1 | |
|
8 | 6 7 | sseq12d | |
9 | 4 8 | imbi12d | |
10 | 9 | rspcv | |
11 | 3 10 | mpii | |
12 | 2 11 | syl | |
13 | 12 | ex | |
14 | 13 | com3l | |
15 | 14 | ralrimdv | |
16 | dfss | |
|
17 | 16 | biimpi | |
18 | 17 | oveq1d | |
19 | 18 | ineq1d | |
20 | 17 | oveq1d | |
21 | 19 20 | sseq12d | |
22 | 21 | biimprcd | |
23 | 22 | ralimi | |
24 | sseq1 | |
|
25 | oveq1 | |
|
26 | 25 | ineq1d | |
27 | oveq1 | |
|
28 | 26 27 | sseq12d | |
29 | 24 28 | imbi12d | |
30 | 29 | cbvralvw | |
31 | 23 30 | sylib | |
32 | 15 31 | impbid1 | |
33 | 32 | adantl | |
34 | 1 33 | bitrd | |