Metamath Proof Explorer


Theorem mdbr4

Description: Binary relation expressing the modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion mdbr4 ACBCA𝑀BxCxBABxBAB

Proof

Step Hyp Ref Expression
1 mdbr2 ACBCA𝑀ByCyByAByAB
2 chincl xCBCxBC
3 inss2 xBB
4 sseq1 y=xByBxBB
5 oveq1 y=xByA=xBA
6 5 ineq1d y=xByAB=xBAB
7 oveq1 y=xByAB=xBAB
8 6 7 sseq12d y=xByAByABxBABxBAB
9 4 8 imbi12d y=xByByAByABxBBxBABxBAB
10 9 rspcv xBCyCyByAByABxBBxBABxBAB
11 3 10 mpii xBCyCyByAByABxBABxBAB
12 2 11 syl xCBCyCyByAByABxBABxBAB
13 12 ex xCBCyCyByAByABxBABxBAB
14 13 com3l BCyCyByAByABxCxBABxBAB
15 14 ralrimdv BCyCyByAByABxCxBABxBAB
16 dfss xBx=xB
17 16 biimpi xBx=xB
18 17 oveq1d xBxA=xBA
19 18 ineq1d xBxAB=xBAB
20 17 oveq1d xBxAB=xBAB
21 19 20 sseq12d xBxABxABxBABxBAB
22 21 biimprcd xBABxBABxBxABxAB
23 22 ralimi xCxBABxBABxCxBxABxAB
24 sseq1 x=yxByB
25 oveq1 x=yxA=yA
26 25 ineq1d x=yxAB=yAB
27 oveq1 x=yxAB=yAB
28 26 27 sseq12d x=yxABxAByAByAB
29 24 28 imbi12d x=yxBxABxAByByAByAB
30 29 cbvralvw xCxBxABxAByCyByAByAB
31 23 30 sylib xCxBABxBAByCyByAByAB
32 15 31 impbid1 BCyCyByAByABxCxBABxBAB
33 32 adantl ACBCyCyByAByABxCxBABxBAB
34 1 33 bitrd ACBCA𝑀BxCxBABxBAB