Metamath Proof Explorer


Theorem mddmd2

Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of MaedaMaeda p. 1. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion mddmd2 ACxCA𝑀xxCA𝑀*x

Proof

Step Hyp Ref Expression
1 breq2 x=yA𝑀xA𝑀y
2 1 cbvralvw xCA𝑀xyCA𝑀y
3 mdbr ACyCA𝑀yxCxyxAy=xAy
4 chjcom ACxCAx=xA
5 4 ineq1d ACxCAxy=xAy
6 incom Axy=yAx
7 5 6 eqtr3di ACxCxAy=yAx
8 7 adantlr ACyCxCxAy=yAx
9 chincl ACyCAyC
10 chjcom AyCxCAyx=xAy
11 9 10 sylan ACyCxCAyx=xAy
12 incom Ay=yA
13 12 oveq1i Ayx=yAx
14 11 13 eqtr3di ACyCxCxAy=yAx
15 8 14 eqeq12d ACyCxCxAy=xAyyAx=yAx
16 eqcom yAx=yAxyAx=yAx
17 15 16 bitrdi ACyCxCxAy=xAyyAx=yAx
18 17 imbi2d ACyCxCxyxAy=xAyxyyAx=yAx
19 18 ralbidva ACyCxCxyxAy=xAyxCxyyAx=yAx
20 3 19 bitrd ACyCA𝑀yxCxyyAx=yAx
21 20 ralbidva ACyCA𝑀yyCxCxyyAx=yAx
22 2 21 bitrid ACxCA𝑀xyCxCxyyAx=yAx
23 ralcom yCxCxyyAx=yAxxCyCxyyAx=yAx
24 22 23 bitrdi ACxCA𝑀xxCyCxyyAx=yAx
25 dmdbr ACxCA𝑀*xyCxyyAx=yAx
26 25 ralbidva ACxCA𝑀*xxCyCxyyAx=yAx
27 24 26 bitr4d ACxCA𝑀xxCA𝑀*x