Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of MaedaMaeda p. 1. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mddmd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |
|
2 | 1 | cbvralvw | |
3 | mdbr | |
|
4 | chjcom | |
|
5 | 4 | ineq1d | |
6 | incom | |
|
7 | 5 6 | eqtr3di | |
8 | 7 | adantlr | |
9 | chincl | |
|
10 | chjcom | |
|
11 | 9 10 | sylan | |
12 | incom | |
|
13 | 12 | oveq1i | |
14 | 11 13 | eqtr3di | |
15 | 8 14 | eqeq12d | |
16 | eqcom | |
|
17 | 15 16 | bitrdi | |
18 | 17 | imbi2d | |
19 | 18 | ralbidva | |
20 | 3 19 | bitrd | |
21 | 20 | ralbidva | |
22 | 2 21 | bitrid | |
23 | ralcom | |
|
24 | 22 23 | bitrdi | |
25 | dmdbr | |
|
26 | 25 | ralbidva | |
27 | 24 26 | bitr4d | |