Metamath Proof Explorer


Theorem mdet0

Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses mdet0.d D=NmaDetR
mdet0.a A=NMatR
mdet0.z Z=0A
mdet0.0 0˙=0R
Assertion mdet0 RCRingNFinNDZ=0˙

Proof

Step Hyp Ref Expression
1 mdet0.d D=NmaDetR
2 mdet0.a A=NMatR
3 mdet0.z Z=0A
4 mdet0.0 0˙=0R
5 n0 NiiN
6 crngring RCRingRRing
7 6 anim1ci RCRingNFinNFinRRing
8 7 adantr RCRingNFiniNNFinRRing
9 2 4 mat0op NFinRRing0A=xN,yN0˙
10 3 9 eqtrid NFinRRingZ=xN,yN0˙
11 8 10 syl RCRingNFiniNZ=xN,yN0˙
12 11 fveq2d RCRingNFiniNDZ=DxN,yN0˙
13 ifid ifx=i0˙0˙=0˙
14 13 eqcomi 0˙=ifx=i0˙0˙
15 14 a1i RCRingNFiniN0˙=ifx=i0˙0˙
16 15 mpoeq3dv RCRingNFiniNxN,yN0˙=xN,yNifx=i0˙0˙
17 16 fveq2d RCRingNFiniNDxN,yN0˙=DxN,yNifx=i0˙0˙
18 eqid BaseR=BaseR
19 simpll RCRingNFiniNRCRing
20 simpr RCRingNFinNFin
21 20 adantr RCRingNFiniNNFin
22 ringmnd RRingRMnd
23 6 22 syl RCRingRMnd
24 23 adantr RCRingNFinRMnd
25 18 4 mndidcl RMnd0˙BaseR
26 24 25 syl RCRingNFin0˙BaseR
27 26 adantr RCRingNFiniN0˙BaseR
28 27 3ad2ant1 RCRingNFiniNxNyN0˙BaseR
29 simpr RCRingNFiniNiN
30 1 18 4 19 21 28 29 mdetr0 RCRingNFiniNDxN,yNifx=i0˙0˙=0˙
31 12 17 30 3eqtrd RCRingNFiniNDZ=0˙
32 31 ex RCRingNFiniNDZ=0˙
33 32 exlimdv RCRingNFiniiNDZ=0˙
34 5 33 biimtrid RCRingNFinNDZ=0˙
35 34 3impia RCRingNFinNDZ=0˙