Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019) (Revised by AV, 3-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdet0.d | |
|
mdet0.a | |
||
mdet0.z | |
||
mdet0.0 | |
||
Assertion | mdet0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdet0.d | |
|
2 | mdet0.a | |
|
3 | mdet0.z | |
|
4 | mdet0.0 | |
|
5 | n0 | |
|
6 | crngring | |
|
7 | 6 | anim1ci | |
8 | 7 | adantr | |
9 | 2 4 | mat0op | |
10 | 3 9 | eqtrid | |
11 | 8 10 | syl | |
12 | 11 | fveq2d | |
13 | ifid | |
|
14 | 13 | eqcomi | |
15 | 14 | a1i | |
16 | 15 | mpoeq3dv | |
17 | 16 | fveq2d | |
18 | eqid | |
|
19 | simpll | |
|
20 | simpr | |
|
21 | 20 | adantr | |
22 | ringmnd | |
|
23 | 6 22 | syl | |
24 | 23 | adantr | |
25 | 18 4 | mndidcl | |
26 | 24 25 | syl | |
27 | 26 | adantr | |
28 | 27 | 3ad2ant1 | |
29 | simpr | |
|
30 | 1 18 4 19 21 28 29 | mdetr0 | |
31 | 12 17 30 | 3eqtrd | |
32 | 31 | ex | |
33 | 32 | exlimdv | |
34 | 5 33 | biimtrid | |
35 | 34 | 3impia | |