| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdet0.d |
|
| 2 |
|
mdet0.a |
|
| 3 |
|
mdet0.z |
|
| 4 |
|
mdet0.0 |
|
| 5 |
|
n0 |
|
| 6 |
|
crngring |
|
| 7 |
6
|
anim1ci |
|
| 8 |
7
|
adantr |
|
| 9 |
2 4
|
mat0op |
|
| 10 |
3 9
|
eqtrid |
|
| 11 |
8 10
|
syl |
|
| 12 |
11
|
fveq2d |
|
| 13 |
|
ifid |
|
| 14 |
13
|
eqcomi |
|
| 15 |
14
|
a1i |
|
| 16 |
15
|
mpoeq3dv |
|
| 17 |
16
|
fveq2d |
|
| 18 |
|
eqid |
|
| 19 |
|
simpll |
|
| 20 |
|
simpr |
|
| 21 |
20
|
adantr |
|
| 22 |
|
ringmnd |
|
| 23 |
6 22
|
syl |
|
| 24 |
23
|
adantr |
|
| 25 |
18 4
|
mndidcl |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
3ad2ant1 |
|
| 29 |
|
simpr |
|
| 30 |
1 18 4 19 21 28 29
|
mdetr0 |
|
| 31 |
12 17 30
|
3eqtrd |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
exlimdv |
|
| 34 |
5 33
|
biimtrid |
|
| 35 |
34
|
3impia |
|