Metamath Proof Explorer


Theorem mdet0

Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses mdet0.d D = N maDet R
mdet0.a A = N Mat R
mdet0.z Z = 0 A
mdet0.0 0 ˙ = 0 R
Assertion mdet0 R CRing N Fin N D Z = 0 ˙

Proof

Step Hyp Ref Expression
1 mdet0.d D = N maDet R
2 mdet0.a A = N Mat R
3 mdet0.z Z = 0 A
4 mdet0.0 0 ˙ = 0 R
5 n0 N i i N
6 crngring R CRing R Ring
7 6 anim1ci R CRing N Fin N Fin R Ring
8 7 adantr R CRing N Fin i N N Fin R Ring
9 2 4 mat0op N Fin R Ring 0 A = x N , y N 0 ˙
10 3 9 syl5eq N Fin R Ring Z = x N , y N 0 ˙
11 8 10 syl R CRing N Fin i N Z = x N , y N 0 ˙
12 11 fveq2d R CRing N Fin i N D Z = D x N , y N 0 ˙
13 ifid if x = i 0 ˙ 0 ˙ = 0 ˙
14 13 eqcomi 0 ˙ = if x = i 0 ˙ 0 ˙
15 14 a1i R CRing N Fin i N 0 ˙ = if x = i 0 ˙ 0 ˙
16 15 mpoeq3dv R CRing N Fin i N x N , y N 0 ˙ = x N , y N if x = i 0 ˙ 0 ˙
17 16 fveq2d R CRing N Fin i N D x N , y N 0 ˙ = D x N , y N if x = i 0 ˙ 0 ˙
18 eqid Base R = Base R
19 simpll R CRing N Fin i N R CRing
20 simpr R CRing N Fin N Fin
21 20 adantr R CRing N Fin i N N Fin
22 ringmnd R Ring R Mnd
23 6 22 syl R CRing R Mnd
24 23 adantr R CRing N Fin R Mnd
25 18 4 mndidcl R Mnd 0 ˙ Base R
26 24 25 syl R CRing N Fin 0 ˙ Base R
27 26 adantr R CRing N Fin i N 0 ˙ Base R
28 27 3ad2ant1 R CRing N Fin i N x N y N 0 ˙ Base R
29 simpr R CRing N Fin i N i N
30 1 18 4 19 21 28 29 mdetr0 R CRing N Fin i N D x N , y N if x = i 0 ˙ 0 ˙ = 0 ˙
31 12 17 30 3eqtrd R CRing N Fin i N D Z = 0 ˙
32 31 ex R CRing N Fin i N D Z = 0 ˙
33 32 exlimdv R CRing N Fin i i N D Z = 0 ˙
34 5 33 syl5bi R CRing N Fin N D Z = 0 ˙
35 34 3impia R CRing N Fin N D Z = 0 ˙