Metamath Proof Explorer


Theorem mdslj1i

Description: Join preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslle1.1 AC
mdslle1.2 BC
mdslle1.3 CC
mdslle1.4 DC
Assertion mdslj1i A𝑀BB𝑀*AACDCDABCDB=CBDB

Proof

Step Hyp Ref Expression
1 mdslle1.1 AC
2 mdslle1.2 BC
3 mdslle1.3 CC
4 mdslle1.4 DC
5 ssin ACADACD
6 5 bicomi ACDACAD
7 1 2 chjcli ABC
8 3 4 7 chlubi CABDABCDAB
9 8 bicomi CDABCABDAB
10 6 9 anbi12i ACDCDABACADCABDAB
11 simpr A𝑀BB𝑀*AB𝑀*A
12 simpl ACADAC
13 simpl CABDABCAB
14 1 2 3 3pm3.2i ACBCCC
15 dmdsl3 ACBCCCB𝑀*AACCABCBA=C
16 14 15 mpan B𝑀*AACCABCBA=C
17 11 12 13 16 syl3an A𝑀BB𝑀*AACADCABDABCBA=C
18 3 2 chincli CBC
19 4 2 chincli DBC
20 18 19 chub1i CBCBDB
21 18 19 chjcli CBDBC
22 18 21 1 chlej1i CBCBDBCBACBDBA
23 20 22 mp1i A𝑀BB𝑀*AACADCABDABCBACBDBA
24 17 23 eqsstrrd A𝑀BB𝑀*AACADCABDABCCBDBA
25 simpr ACADAD
26 simpr CABDABDAB
27 1 2 4 3pm3.2i ACBCDC
28 dmdsl3 ACBCDCB𝑀*AADDABDBA=D
29 27 28 mpan B𝑀*AADDABDBA=D
30 11 25 26 29 syl3an A𝑀BB𝑀*AACADCABDABDBA=D
31 19 18 chub2i DBCBDB
32 19 21 1 chlej1i DBCBDBDBACBDBA
33 31 32 mp1i A𝑀BB𝑀*AACADCABDABDBACBDBA
34 30 33 eqsstrrd A𝑀BB𝑀*AACADCABDABDCBDBA
35 24 34 jca A𝑀BB𝑀*AACADCABDABCCBDBADCBDBA
36 21 1 chjcli CBDBAC
37 3 4 36 chlubi CCBDBADCBDBACDCBDBA
38 35 37 sylib A𝑀BB𝑀*AACADCABDABCDCBDBA
39 38 ssrind A𝑀BB𝑀*AACADCABDABCDBCBDBAB
40 simpl A𝑀BB𝑀*AA𝑀B
41 ssrin ACABCB
42 41 20 sstrdi ACABCBDB
43 42 adantr ACADABCBDB
44 inss2 CBB
45 inss2 DBB
46 18 19 2 chlubi CBBDBBCBDBB
47 46 bicomi CBDBBCBBDBB
48 44 45 47 mpbir2an CBDBB
49 48 a1i CABDABCBDBB
50 1 2 21 3pm3.2i ACBCCBDBC
51 mdsl3 ACBCCBDBCA𝑀BABCBDBCBDBBCBDBAB=CBDB
52 50 51 mpan A𝑀BABCBDBCBDBBCBDBAB=CBDB
53 40 43 49 52 syl3an A𝑀BB𝑀*AACADCABDABCBDBAB=CBDB
54 39 53 sseqtrd A𝑀BB𝑀*AACADCABDABCDBCBDB
55 54 3expb A𝑀BB𝑀*AACADCABDABCDBCBDB
56 10 55 sylan2b A𝑀BB𝑀*AACDCDABCDBCBDB
57 3 4 2 lediri CBDBCDB
58 57 a1i A𝑀BB𝑀*AACDCDABCBDBCDB
59 56 58 eqssd A𝑀BB𝑀*AACDCDABCDB=CBDB