Metamath Proof Explorer


Theorem mdsymlem2

Description: Lemma for mdsymi . (Contributed by NM, 1-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 A C
mdsymlem1.2 B C
mdsymlem1.3 C = A p
Assertion mdsymlem2 p HAtoms B C A B 𝑀 * A p A B B 0 r HAtoms q HAtoms p q r q A r B

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 A C
2 mdsymlem1.2 B C
3 mdsymlem1.3 C = A p
4 2 hatomici B 0 r HAtoms r B
5 simplll p HAtoms B C A B 𝑀 * A p A B r HAtoms r B p HAtoms
6 atelch p HAtoms p C
7 atelch r HAtoms r C
8 chub1 p C r C p p r
9 6 7 8 syl2an p HAtoms r HAtoms p p r
10 9 adantlr p HAtoms B C A r HAtoms p p r
11 10 adantlr p HAtoms B C A B 𝑀 * A p A B r HAtoms p p r
12 1 2 3 mdsymlem1 p C B C A B 𝑀 * A p A B p A
13 6 12 sylanl1 p HAtoms B C A B 𝑀 * A p A B p A
14 13 adantr p HAtoms B C A B 𝑀 * A p A B r HAtoms p A
15 11 14 jca p HAtoms B C A B 𝑀 * A p A B r HAtoms p p r p A
16 15 anim1i p HAtoms B C A B 𝑀 * A p A B r HAtoms r B p p r p A r B
17 anass p p r p A r B p p r p A r B
18 16 17 sylib p HAtoms B C A B 𝑀 * A p A B r HAtoms r B p p r p A r B
19 18 anasss p HAtoms B C A B 𝑀 * A p A B r HAtoms r B p p r p A r B
20 oveq1 q = p q r = p r
21 20 sseq2d q = p p q r p p r
22 sseq1 q = p q A p A
23 22 anbi1d q = p q A r B p A r B
24 21 23 anbi12d q = p p q r q A r B p p r p A r B
25 24 rspcev p HAtoms p p r p A r B q HAtoms p q r q A r B
26 5 19 25 syl2anc p HAtoms B C A B 𝑀 * A p A B r HAtoms r B q HAtoms p q r q A r B
27 26 exp32 p HAtoms B C A B 𝑀 * A p A B r HAtoms r B q HAtoms p q r q A r B
28 27 reximdvai p HAtoms B C A B 𝑀 * A p A B r HAtoms r B r HAtoms q HAtoms p q r q A r B
29 4 28 syl5 p HAtoms B C A B 𝑀 * A p A B B 0 r HAtoms q HAtoms p q r q A r B