Metamath Proof Explorer


Theorem measvun

Description: The measure of a countable disjoint union is the sum of the measures. (Contributed by Thierry Arnoux, 26-Dec-2016)

Ref Expression
Assertion measvun M measures S A 𝒫 S A ω Disj x A x M A = * x A M x

Proof

Step Hyp Ref Expression
1 simp2 M measures S A 𝒫 S A ω Disj x A x A 𝒫 S
2 measbase M measures S S ran sigAlgebra
3 ismeas S ran sigAlgebra M measures S M : S 0 +∞ M = 0 y 𝒫 S y ω Disj x y x M y = * x y M x
4 2 3 syl M measures S M measures S M : S 0 +∞ M = 0 y 𝒫 S y ω Disj x y x M y = * x y M x
5 4 ibi M measures S M : S 0 +∞ M = 0 y 𝒫 S y ω Disj x y x M y = * x y M x
6 5 simp3d M measures S y 𝒫 S y ω Disj x y x M y = * x y M x
7 6 3ad2ant1 M measures S A 𝒫 S A ω Disj x A x y 𝒫 S y ω Disj x y x M y = * x y M x
8 simp3 M measures S A 𝒫 S A ω Disj x A x A ω Disj x A x
9 breq1 y = A y ω A ω
10 disjeq1 y = A Disj x y x Disj x A x
11 9 10 anbi12d y = A y ω Disj x y x A ω Disj x A x
12 unieq y = A y = A
13 12 fveq2d y = A M y = M A
14 esumeq1 y = A * x y M x = * x A M x
15 13 14 eqeq12d y = A M y = * x y M x M A = * x A M x
16 11 15 imbi12d y = A y ω Disj x y x M y = * x y M x A ω Disj x A x M A = * x A M x
17 16 rspcv A 𝒫 S y 𝒫 S y ω Disj x y x M y = * x y M x A ω Disj x A x M A = * x A M x
18 1 7 8 17 syl3c M measures S A 𝒫 S A ω Disj x A x M A = * x A M x