Metamath Proof Explorer


Theorem mgmhmima

Description: The homomorphic image of a submagma is a submagma. (Contributed by AV, 27-Feb-2020)

Ref Expression
Assertion mgmhmima FMMgmHomNXSubMgmMFXSubMgmN

Proof

Step Hyp Ref Expression
1 imassrn FXranF
2 eqid BaseM=BaseM
3 eqid BaseN=BaseN
4 2 3 mgmhmf FMMgmHomNF:BaseMBaseN
5 4 adantr FMMgmHomNXSubMgmMF:BaseMBaseN
6 5 frnd FMMgmHomNXSubMgmMranFBaseN
7 1 6 sstrid FMMgmHomNXSubMgmMFXBaseN
8 simpll FMMgmHomNXSubMgmMzXxXFMMgmHomN
9 2 submgmss XSubMgmMXBaseM
10 9 adantl FMMgmHomNXSubMgmMXBaseM
11 10 adantr FMMgmHomNXSubMgmMzXxXXBaseM
12 simprl FMMgmHomNXSubMgmMzXxXzX
13 11 12 sseldd FMMgmHomNXSubMgmMzXxXzBaseM
14 simprr FMMgmHomNXSubMgmMzXxXxX
15 11 14 sseldd FMMgmHomNXSubMgmMzXxXxBaseM
16 eqid +M=+M
17 eqid +N=+N
18 2 16 17 mgmhmlin FMMgmHomNzBaseMxBaseMFz+Mx=Fz+NFx
19 8 13 15 18 syl3anc FMMgmHomNXSubMgmMzXxXFz+Mx=Fz+NFx
20 5 ffnd FMMgmHomNXSubMgmMFFnBaseM
21 20 adantr FMMgmHomNXSubMgmMzXxXFFnBaseM
22 16 submgmcl XSubMgmMzXxXz+MxX
23 22 3expb XSubMgmMzXxXz+MxX
24 23 adantll FMMgmHomNXSubMgmMzXxXz+MxX
25 fnfvima FFnBaseMXBaseMz+MxXFz+MxFX
26 21 11 24 25 syl3anc FMMgmHomNXSubMgmMzXxXFz+MxFX
27 19 26 eqeltrrd FMMgmHomNXSubMgmMzXxXFz+NFxFX
28 27 anassrs FMMgmHomNXSubMgmMzXxXFz+NFxFX
29 28 ralrimiva FMMgmHomNXSubMgmMzXxXFz+NFxFX
30 oveq2 y=FxFz+Ny=Fz+NFx
31 30 eleq1d y=FxFz+NyFXFz+NFxFX
32 31 ralima FFnBaseMXBaseMyFXFz+NyFXxXFz+NFxFX
33 20 10 32 syl2anc FMMgmHomNXSubMgmMyFXFz+NyFXxXFz+NFxFX
34 33 adantr FMMgmHomNXSubMgmMzXyFXFz+NyFXxXFz+NFxFX
35 29 34 mpbird FMMgmHomNXSubMgmMzXyFXFz+NyFX
36 35 ralrimiva FMMgmHomNXSubMgmMzXyFXFz+NyFX
37 oveq1 x=Fzx+Ny=Fz+Ny
38 37 eleq1d x=Fzx+NyFXFz+NyFX
39 38 ralbidv x=FzyFXx+NyFXyFXFz+NyFX
40 39 ralima FFnBaseMXBaseMxFXyFXx+NyFXzXyFXFz+NyFX
41 20 10 40 syl2anc FMMgmHomNXSubMgmMxFXyFXx+NyFXzXyFXFz+NyFX
42 36 41 mpbird FMMgmHomNXSubMgmMxFXyFXx+NyFX
43 mgmhmrcl FMMgmHomNMMgmNMgm
44 43 simprd FMMgmHomNNMgm
45 44 adantr FMMgmHomNXSubMgmMNMgm
46 3 17 issubmgm NMgmFXSubMgmNFXBaseNxFXyFXx+NyFX
47 45 46 syl FMMgmHomNXSubMgmMFXSubMgmNFXBaseNxFXyFXx+NyFX
48 7 42 47 mpbir2and FMMgmHomNXSubMgmMFXSubMgmN