Metamath Proof Explorer


Theorem mhplss

Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhplss.h H=ImHomPR
mhplss.p P=ImPolyR
mhplss.i φIV
mhplss.r φRRing
mhplss.n φN0
Assertion mhplss φHNLSubSpP

Proof

Step Hyp Ref Expression
1 mhplss.h H=ImHomPR
2 mhplss.p P=ImPolyR
3 mhplss.i φIV
4 mhplss.r φRRing
5 mhplss.n φN0
6 ringgrp RRingRGrp
7 4 6 syl φRGrp
8 1 2 3 7 5 mhpsubg φHNSubGrpP
9 eqid P=P
10 eqid BaseR=BaseR
11 3 adantr φaBaseScalarPbHNIV
12 4 adantr φaBaseScalarPbHNRRing
13 5 adantr φaBaseScalarPbHNN0
14 2 3 4 mplsca φR=ScalarP
15 14 fveq2d φBaseR=BaseScalarP
16 15 eleq2d φaBaseRaBaseScalarP
17 16 biimpar φaBaseScalarPaBaseR
18 17 adantrr φaBaseScalarPbHNaBaseR
19 simprr φaBaseScalarPbHNbHN
20 1 2 9 10 11 12 13 18 19 mhpvscacl φaBaseScalarPbHNaPbHN
21 20 ralrimivva φaBaseScalarPbHNaPbHN
22 2 mpllmod IVRRingPLMod
23 3 4 22 syl2anc φPLMod
24 eqid ScalarP=ScalarP
25 eqid BaseScalarP=BaseScalarP
26 eqid BaseP=BaseP
27 eqid LSubSpP=LSubSpP
28 24 25 26 9 27 islss4 PLModHNLSubSpPHNSubGrpPaBaseScalarPbHNaPbHN
29 23 28 syl φHNLSubSpPHNSubGrpPaBaseScalarPbHNaPbHN
30 8 21 29 mpbir2and φHNLSubSpP