Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhplss.h | |
|
mhplss.p | |
||
mhplss.i | |
||
mhplss.r | |
||
mhplss.n | |
||
Assertion | mhplss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhplss.h | |
|
2 | mhplss.p | |
|
3 | mhplss.i | |
|
4 | mhplss.r | |
|
5 | mhplss.n | |
|
6 | ringgrp | |
|
7 | 4 6 | syl | |
8 | 1 2 3 7 5 | mhpsubg | |
9 | eqid | |
|
10 | eqid | |
|
11 | 3 | adantr | |
12 | 4 | adantr | |
13 | 5 | adantr | |
14 | 2 3 4 | mplsca | |
15 | 14 | fveq2d | |
16 | 15 | eleq2d | |
17 | 16 | biimpar | |
18 | 17 | adantrr | |
19 | simprr | |
|
20 | 1 2 9 10 11 12 13 18 19 | mhpvscacl | |
21 | 20 | ralrimivva | |
22 | 2 | mpllmod | |
23 | 3 4 22 | syl2anc | |
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | 24 25 26 9 27 | islss4 | |
29 | 23 28 | syl | |
30 | 8 21 29 | mpbir2and | |