Metamath Proof Explorer


Theorem mhplss

Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhplss.h H = I mHomP R
mhplss.p P = I mPoly R
mhplss.i φ I V
mhplss.r φ R Ring
mhplss.n φ N 0
Assertion mhplss φ H N LSubSp P

Proof

Step Hyp Ref Expression
1 mhplss.h H = I mHomP R
2 mhplss.p P = I mPoly R
3 mhplss.i φ I V
4 mhplss.r φ R Ring
5 mhplss.n φ N 0
6 ringgrp R Ring R Grp
7 4 6 syl φ R Grp
8 1 2 3 7 5 mhpsubg φ H N SubGrp P
9 eqid P = P
10 eqid Base R = Base R
11 3 adantr φ a Base Scalar P b H N I V
12 4 adantr φ a Base Scalar P b H N R Ring
13 5 adantr φ a Base Scalar P b H N N 0
14 2 3 4 mplsca φ R = Scalar P
15 14 fveq2d φ Base R = Base Scalar P
16 15 eleq2d φ a Base R a Base Scalar P
17 16 biimpar φ a Base Scalar P a Base R
18 17 adantrr φ a Base Scalar P b H N a Base R
19 simprr φ a Base Scalar P b H N b H N
20 1 2 9 10 11 12 13 18 19 mhpvscacl φ a Base Scalar P b H N a P b H N
21 20 ralrimivva φ a Base Scalar P b H N a P b H N
22 2 mpllmod I V R Ring P LMod
23 3 4 22 syl2anc φ P LMod
24 eqid Scalar P = Scalar P
25 eqid Base Scalar P = Base Scalar P
26 eqid Base P = Base P
27 eqid LSubSp P = LSubSp P
28 24 25 26 9 27 islss4 P LMod H N LSubSp P H N SubGrp P a Base Scalar P b H N a P b H N
29 23 28 syl φ H N LSubSp P H N SubGrp P a Base Scalar P b H N a P b H N
30 8 21 29 mpbir2and φ H N LSubSp P