Metamath Proof Explorer


Theorem mhpvarcl

Description: A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses mhpvarcl.h H = I mHomP R
mhpvarcl.v V = I mVar R
mhpvarcl.i φ I W
mhpvarcl.r φ R Ring
mhpvarcl.x φ X I
Assertion mhpvarcl φ V X H 1

Proof

Step Hyp Ref Expression
1 mhpvarcl.h H = I mHomP R
2 mhpvarcl.v V = I mVar R
3 mhpvarcl.i φ I W
4 mhpvarcl.r φ R Ring
5 mhpvarcl.x φ X I
6 iffalse ¬ d = y I if y = X 1 0 if d = y I if y = X 1 0 1 R 0 R = 0 R
7 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
8 eqid 0 R = 0 R
9 eqid 1 R = 1 R
10 3 adantr φ d h 0 I | h -1 Fin I W
11 4 adantr φ d h 0 I | h -1 Fin R Ring
12 5 adantr φ d h 0 I | h -1 Fin X I
13 simpr φ d h 0 I | h -1 Fin d h 0 I | h -1 Fin
14 2 7 8 9 10 11 12 13 mvrval2 φ d h 0 I | h -1 Fin V X d = if d = y I if y = X 1 0 1 R 0 R
15 14 eqeq1d φ d h 0 I | h -1 Fin V X d = 0 R if d = y I if y = X 1 0 1 R 0 R = 0 R
16 6 15 syl5ibr φ d h 0 I | h -1 Fin ¬ d = y I if y = X 1 0 V X d = 0 R
17 16 necon1ad φ d h 0 I | h -1 Fin V X d 0 R d = y I if y = X 1 0
18 nn0subm 0 SubMnd fld
19 eqid fld 𝑠 0 = fld 𝑠 0
20 cnfld0 0 = 0 fld
21 19 20 subm0 0 SubMnd fld 0 = 0 fld 𝑠 0
22 18 21 ax-mp 0 = 0 fld 𝑠 0
23 19 submmnd 0 SubMnd fld fld 𝑠 0 Mnd
24 18 23 mp1i φ d h 0 I | h -1 Fin fld 𝑠 0 Mnd
25 eqid y I if y = X 1 0 = y I if y = X 1 0
26 1nn0 1 0
27 19 submbas 0 SubMnd fld 0 = Base fld 𝑠 0
28 18 27 ax-mp 0 = Base fld 𝑠 0
29 26 28 eleqtri 1 Base fld 𝑠 0
30 29 a1i φ d h 0 I | h -1 Fin 1 Base fld 𝑠 0
31 22 24 10 12 25 30 gsummptif1n0 φ d h 0 I | h -1 Fin fld 𝑠 0 y I if y = X 1 0 = 1
32 oveq2 d = y I if y = X 1 0 fld 𝑠 0 d = fld 𝑠 0 y I if y = X 1 0
33 32 eqeq1d d = y I if y = X 1 0 fld 𝑠 0 d = 1 fld 𝑠 0 y I if y = X 1 0 = 1
34 31 33 syl5ibrcom φ d h 0 I | h -1 Fin d = y I if y = X 1 0 fld 𝑠 0 d = 1
35 17 34 syld φ d h 0 I | h -1 Fin V X d 0 R fld 𝑠 0 d = 1
36 35 ralrimiva φ d h 0 I | h -1 Fin V X d 0 R fld 𝑠 0 d = 1
37 eqid I mPoly R = I mPoly R
38 eqid Base I mPoly R = Base I mPoly R
39 26 a1i φ 1 0
40 37 2 38 3 4 5 mvrcl φ V X Base I mPoly R
41 1 37 38 8 7 3 4 39 40 ismhp3 φ V X H 1 d h 0 I | h -1 Fin V X d 0 R fld 𝑠 0 d = 1
42 36 41 mpbird φ V X H 1