Metamath Proof Explorer


Theorem mhpvarcl

Description: A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses mhpvarcl.h H=ImHomPR
mhpvarcl.v V=ImVarR
mhpvarcl.i φIW
mhpvarcl.r φRRing
mhpvarcl.x φXI
Assertion mhpvarcl φVXH1

Proof

Step Hyp Ref Expression
1 mhpvarcl.h H=ImHomPR
2 mhpvarcl.v V=ImVarR
3 mhpvarcl.i φIW
4 mhpvarcl.r φRRing
5 mhpvarcl.x φXI
6 iffalse ¬d=yIify=X10ifd=yIify=X101R0R=0R
7 eqid h0I|h-1Fin=h0I|h-1Fin
8 eqid 0R=0R
9 eqid 1R=1R
10 3 adantr φdh0I|h-1FinIW
11 4 adantr φdh0I|h-1FinRRing
12 5 adantr φdh0I|h-1FinXI
13 simpr φdh0I|h-1Findh0I|h-1Fin
14 2 7 8 9 10 11 12 13 mvrval2 φdh0I|h-1FinVXd=ifd=yIify=X101R0R
15 14 eqeq1d φdh0I|h-1FinVXd=0Rifd=yIify=X101R0R=0R
16 6 15 imbitrrid φdh0I|h-1Fin¬d=yIify=X10VXd=0R
17 16 necon1ad φdh0I|h-1FinVXd0Rd=yIify=X10
18 nn0subm 0SubMndfld
19 eqid fld𝑠0=fld𝑠0
20 cnfld0 0=0fld
21 19 20 subm0 0SubMndfld0=0fld𝑠0
22 18 21 ax-mp 0=0fld𝑠0
23 19 submmnd 0SubMndfldfld𝑠0Mnd
24 18 23 mp1i φdh0I|h-1Finfld𝑠0Mnd
25 eqid yIify=X10=yIify=X10
26 1nn0 10
27 19 submbas 0SubMndfld0=Basefld𝑠0
28 18 27 ax-mp 0=Basefld𝑠0
29 26 28 eleqtri 1Basefld𝑠0
30 29 a1i φdh0I|h-1Fin1Basefld𝑠0
31 22 24 10 12 25 30 gsummptif1n0 φdh0I|h-1Finfld𝑠0yIify=X10=1
32 oveq2 d=yIify=X10fld𝑠0d=fld𝑠0yIify=X10
33 32 eqeq1d d=yIify=X10fld𝑠0d=1fld𝑠0yIify=X10=1
34 31 33 syl5ibrcom φdh0I|h-1Find=yIify=X10fld𝑠0d=1
35 17 34 syld φdh0I|h-1FinVXd0Rfld𝑠0d=1
36 35 ralrimiva φdh0I|h-1FinVXd0Rfld𝑠0d=1
37 eqid ImPolyR=ImPolyR
38 eqid BaseImPolyR=BaseImPolyR
39 26 a1i φ10
40 37 2 38 3 4 5 mvrcl φVXBaseImPolyR
41 1 37 38 8 7 3 4 39 40 ismhp3 φVXH1dh0I|h-1FinVXd0Rfld𝑠0d=1
42 36 41 mpbird φVXH1