Metamath Proof Explorer


Theorem minvecolem4c

Description: Lemma for minveco . The infimum of the distances to A is a real number. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
minveco.f φF:Y
minveco.1 φnADFn2S2+1n
Assertion minvecolem4c φS

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 minveco.f φF:Y
13 minveco.1 φnADFn2S2+1n
14 1 2 3 4 5 6 7 8 9 10 minvecolem1 φRRwR0w
15 14 simp1d φR
16 14 simp2d φR
17 0re 0
18 14 simp3d φwR0w
19 breq1 x=0xw0w
20 19 ralbidv x=0wRxwwR0w
21 20 rspcev 0wR0wxwRxw
22 17 18 21 sylancr φxwRxw
23 infrecl RRxwRxwsupR<
24 15 16 22 23 syl3anc φsupR<
25 11 24 eqeltrid φS