Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndpluscn.f | |
|
mndpluscn.p | |
||
mndpluscn.t | |
||
mndpluscn.j | |
||
mndpluscn.k | |
||
mndpluscn.h | |
||
mndpluscn.o | |
||
Assertion | mndpluscn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndpluscn.f | |
|
2 | mndpluscn.p | |
|
3 | mndpluscn.t | |
|
4 | mndpluscn.j | |
|
5 | mndpluscn.k | |
|
6 | mndpluscn.h | |
|
7 | mndpluscn.o | |
|
8 | ffn | |
|
9 | fnov | |
|
10 | 9 | biimpi | |
11 | 3 8 10 | mp2b | |
12 | 4 | toponunii | |
13 | 5 | toponunii | |
14 | 12 13 | hmeof1o | |
15 | 1 14 | ax-mp | |
16 | f1ocnvdm | |
|
17 | 15 16 | mpan | |
18 | f1ocnvdm | |
|
19 | 15 18 | mpan | |
20 | 17 19 | anim12i | |
21 | 6 | rgen2 | |
22 | fvoveq1 | |
|
23 | fveq2 | |
|
24 | 23 | oveq1d | |
25 | 22 24 | eqeq12d | |
26 | oveq2 | |
|
27 | 26 | fveq2d | |
28 | fveq2 | |
|
29 | 28 | oveq2d | |
30 | 27 29 | eqeq12d | |
31 | 25 30 | rspc2va | |
32 | 20 21 31 | sylancl | |
33 | f1ocnvfv2 | |
|
34 | 15 33 | mpan | |
35 | f1ocnvfv2 | |
|
36 | 15 35 | mpan | |
37 | 34 36 | oveqan12d | |
38 | 32 37 | eqtr2d | |
39 | 38 | mpoeq3ia | |
40 | 11 39 | eqtri | |
41 | 5 | a1i | |
42 | 41 41 | cnmpt1st | |
43 | hmeocnvcn | |
|
44 | 1 43 | mp1i | |
45 | 41 41 42 44 | cnmpt21f | |
46 | 41 41 | cnmpt2nd | |
47 | 41 41 46 44 | cnmpt21f | |
48 | 7 | a1i | |
49 | 41 41 45 47 48 | cnmpt22f | |
50 | hmeocn | |
|
51 | 1 50 | mp1i | |
52 | 41 41 49 51 | cnmpt21f | |
53 | 52 | mptru | |
54 | 40 53 | eqeltri | |