Metamath Proof Explorer


Theorem mndpluscn

Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017)

Ref Expression
Hypotheses mndpluscn.f FJHomeoK
mndpluscn.p +˙:B×BB
mndpluscn.t ˙:C×CC
mndpluscn.j JTopOnB
mndpluscn.k KTopOnC
mndpluscn.h xByBFx+˙y=Fx˙Fy
mndpluscn.o +˙J×tJCnJ
Assertion mndpluscn ˙K×tKCnK

Proof

Step Hyp Ref Expression
1 mndpluscn.f FJHomeoK
2 mndpluscn.p +˙:B×BB
3 mndpluscn.t ˙:C×CC
4 mndpluscn.j JTopOnB
5 mndpluscn.k KTopOnC
6 mndpluscn.h xByBFx+˙y=Fx˙Fy
7 mndpluscn.o +˙J×tJCnJ
8 ffn ˙:C×CC˙FnC×C
9 fnov ˙FnC×C˙=aC,bCa˙b
10 9 biimpi ˙FnC×C˙=aC,bCa˙b
11 3 8 10 mp2b ˙=aC,bCa˙b
12 4 toponunii B=J
13 5 toponunii C=K
14 12 13 hmeof1o FJHomeoKF:B1-1 ontoC
15 1 14 ax-mp F:B1-1 ontoC
16 f1ocnvdm F:B1-1 ontoCaCF-1aB
17 15 16 mpan aCF-1aB
18 f1ocnvdm F:B1-1 ontoCbCF-1bB
19 15 18 mpan bCF-1bB
20 17 19 anim12i aCbCF-1aBF-1bB
21 6 rgen2 xByBFx+˙y=Fx˙Fy
22 fvoveq1 x=F-1aFx+˙y=FF-1a+˙y
23 fveq2 x=F-1aFx=FF-1a
24 23 oveq1d x=F-1aFx˙Fy=FF-1a˙Fy
25 22 24 eqeq12d x=F-1aFx+˙y=Fx˙FyFF-1a+˙y=FF-1a˙Fy
26 oveq2 y=F-1bF-1a+˙y=F-1a+˙F-1b
27 26 fveq2d y=F-1bFF-1a+˙y=FF-1a+˙F-1b
28 fveq2 y=F-1bFy=FF-1b
29 28 oveq2d y=F-1bFF-1a˙Fy=FF-1a˙FF-1b
30 27 29 eqeq12d y=F-1bFF-1a+˙y=FF-1a˙FyFF-1a+˙F-1b=FF-1a˙FF-1b
31 25 30 rspc2va F-1aBF-1bBxByBFx+˙y=Fx˙FyFF-1a+˙F-1b=FF-1a˙FF-1b
32 20 21 31 sylancl aCbCFF-1a+˙F-1b=FF-1a˙FF-1b
33 f1ocnvfv2 F:B1-1 ontoCaCFF-1a=a
34 15 33 mpan aCFF-1a=a
35 f1ocnvfv2 F:B1-1 ontoCbCFF-1b=b
36 15 35 mpan bCFF-1b=b
37 34 36 oveqan12d aCbCFF-1a˙FF-1b=a˙b
38 32 37 eqtr2d aCbCa˙b=FF-1a+˙F-1b
39 38 mpoeq3ia aC,bCa˙b=aC,bCFF-1a+˙F-1b
40 11 39 eqtri ˙=aC,bCFF-1a+˙F-1b
41 5 a1i KTopOnC
42 41 41 cnmpt1st aC,bCaK×tKCnK
43 hmeocnvcn FJHomeoKF-1KCnJ
44 1 43 mp1i F-1KCnJ
45 41 41 42 44 cnmpt21f aC,bCF-1aK×tKCnJ
46 41 41 cnmpt2nd aC,bCbK×tKCnK
47 41 41 46 44 cnmpt21f aC,bCF-1bK×tKCnJ
48 7 a1i +˙J×tJCnJ
49 41 41 45 47 48 cnmpt22f aC,bCF-1a+˙F-1bK×tKCnJ
50 hmeocn FJHomeoKFJCnK
51 1 50 mp1i FJCnK
52 41 41 49 51 cnmpt21f aC,bCFF-1a+˙F-1bK×tKCnK
53 52 mptru aC,bCFF-1a+˙F-1bK×tKCnK
54 40 53 eqeltri ˙K×tKCnK