Metamath Proof Explorer


Theorem mndtccatid

Description: Lemma for mndtccat and mndtcid . (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtccat.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtccat.m φMMnd
Assertion mndtccatid φCCatIdC=yBaseC0M

Proof

Step Hyp Ref Expression
1 mndtccat.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtccat.m φMMnd
3 eqidd φBaseC=BaseC
4 eqidd φHomC=HomC
5 eqidd φcompC=compC
6 fvexd Could not format ( ph -> ( MndToCat ` M ) e. _V ) : No typesetting found for |- ( ph -> ( MndToCat ` M ) e. _V ) with typecode |-
7 1 6 eqeltrd φCV
8 biid xBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCw
9 eqid BaseM=BaseM
10 eqid 0M=0M
11 9 10 mndidcl MMnd0MBaseM
12 2 11 syl φ0MBaseM
13 12 adantr φyBaseC0MBaseM
14 1 adantr Could not format ( ( ph /\ y e. ( Base ` C ) ) -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ( ph /\ y e. ( Base ` C ) ) -> C = ( MndToCat ` M ) ) with typecode |-
15 2 adantr φyBaseCMMnd
16 eqidd φyBaseCBaseC=BaseC
17 simpr φyBaseCyBaseC
18 eqidd φyBaseCHomC=HomC
19 14 15 16 17 17 18 mndtchom φyBaseCyHomCy=BaseM
20 13 19 eleqtrrd φyBaseC0MyHomCy
21 1 adantr Could not format ( ( ph /\ ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) /\ k e. ( z ( Hom ` C ) w ) ) ) ) -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ( ph /\ ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) /\ k e. ( z ( Hom ` C ) w ) ) ) ) -> C = ( MndToCat ` M ) ) with typecode |-
22 2 adantr φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwMMnd
23 eqidd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwBaseC=BaseC
24 simpr1l φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwxBaseC
25 simpr1r φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwyBaseC
26 eqidd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwcompC=compC
27 21 22 23 24 25 25 26 mndtcco φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwxycompCy=+M
28 27 oveqd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCw0MxycompCyf=0M+Mf
29 simpr31 φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwfxHomCy
30 eqidd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwHomC=HomC
31 21 22 23 24 25 30 mndtchom φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwxHomCy=BaseM
32 29 31 eleqtrd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwfBaseM
33 eqid +M=+M
34 9 33 10 mndlid MMndfBaseM0M+Mf=f
35 22 32 34 syl2anc φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCw0M+Mf=f
36 28 35 eqtrd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCw0MxycompCyf=f
37 simpr2l φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwzBaseC
38 21 22 23 25 25 37 26 mndtcco φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwyycompCz=+M
39 38 oveqd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwgyycompCz0M=g+M0M
40 simpr32 φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwgyHomCz
41 21 22 23 25 37 30 mndtchom φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwyHomCz=BaseM
42 40 41 eleqtrd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwgBaseM
43 9 33 10 mndrid MMndgBaseMg+M0M=g
44 22 42 43 syl2anc φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwg+M0M=g
45 39 44 eqtrd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwgyycompCz0M=g
46 9 33 mndcl MMndgBaseMfBaseMg+MfBaseM
47 22 42 32 46 syl3anc φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwg+MfBaseM
48 21 22 23 24 25 37 26 mndtcco φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwxycompCz=+M
49 48 oveqd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwgxycompCzf=g+Mf
50 21 22 23 24 37 30 mndtchom φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwxHomCz=BaseM
51 47 49 50 3eltr4d φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwgxycompCzfxHomCz
52 simpr33 φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwkzHomCw
53 simpr2r φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwwBaseC
54 21 22 23 37 53 30 mndtchom φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwzHomCw=BaseM
55 52 54 eleqtrd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwkBaseM
56 9 33 mndass MMndkBaseMgBaseMfBaseMk+Mg+Mf=k+Mg+Mf
57 22 55 42 32 56 syl13anc φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwk+Mg+Mf=k+Mg+Mf
58 21 22 23 24 25 53 26 mndtcco φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwxycompCw=+M
59 21 22 23 25 37 53 26 mndtcco φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwyzcompCw=+M
60 59 oveqd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwkyzcompCwg=k+Mg
61 eqidd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwf=f
62 58 60 61 oveq123d φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwkyzcompCwgxycompCwf=k+Mg+Mf
63 21 22 23 24 37 53 26 mndtcco φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwxzcompCw=+M
64 eqidd φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwk=k
65 63 64 49 oveq123d φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwkxzcompCwgxycompCzf=k+Mg+Mf
66 57 62 65 3eqtr4d φxBaseCyBaseCzBaseCwBaseCfxHomCygyHomCzkzHomCwkyzcompCwgxycompCwf=kxzcompCwgxycompCzf
67 3 4 5 7 8 20 36 45 51 66 iscatd2 φCCatIdC=yBaseC0M