| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndtccat.c |  | 
						
							| 2 |  | mndtccat.m |  | 
						
							| 3 |  | eqidd |  | 
						
							| 4 |  | eqidd |  | 
						
							| 5 |  | eqidd |  | 
						
							| 6 |  | fvexd |  | 
						
							| 7 | 1 6 | eqeltrd |  | 
						
							| 8 |  | biid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 9 10 | mndidcl |  | 
						
							| 12 | 2 11 | syl |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 1 | adantr |  | 
						
							| 15 | 2 | adantr |  | 
						
							| 16 |  | eqidd |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | eqidd |  | 
						
							| 19 | 14 15 16 17 17 18 | mndtchom |  | 
						
							| 20 | 13 19 | eleqtrrd |  | 
						
							| 21 | 1 | adantr |  | 
						
							| 22 | 2 | adantr |  | 
						
							| 23 |  | eqidd |  | 
						
							| 24 |  | simpr1l |  | 
						
							| 25 |  | simpr1r |  | 
						
							| 26 |  | eqidd |  | 
						
							| 27 | 21 22 23 24 25 25 26 | mndtcco |  | 
						
							| 28 | 27 | oveqd |  | 
						
							| 29 |  | simpr31 |  | 
						
							| 30 |  | eqidd |  | 
						
							| 31 | 21 22 23 24 25 30 | mndtchom |  | 
						
							| 32 | 29 31 | eleqtrd |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 9 33 10 | mndlid |  | 
						
							| 35 | 22 32 34 | syl2anc |  | 
						
							| 36 | 28 35 | eqtrd |  | 
						
							| 37 |  | simpr2l |  | 
						
							| 38 | 21 22 23 25 25 37 26 | mndtcco |  | 
						
							| 39 | 38 | oveqd |  | 
						
							| 40 |  | simpr32 |  | 
						
							| 41 | 21 22 23 25 37 30 | mndtchom |  | 
						
							| 42 | 40 41 | eleqtrd |  | 
						
							| 43 | 9 33 10 | mndrid |  | 
						
							| 44 | 22 42 43 | syl2anc |  | 
						
							| 45 | 39 44 | eqtrd |  | 
						
							| 46 | 9 33 | mndcl |  | 
						
							| 47 | 22 42 32 46 | syl3anc |  | 
						
							| 48 | 21 22 23 24 25 37 26 | mndtcco |  | 
						
							| 49 | 48 | oveqd |  | 
						
							| 50 | 21 22 23 24 37 30 | mndtchom |  | 
						
							| 51 | 47 49 50 | 3eltr4d |  | 
						
							| 52 |  | simpr33 |  | 
						
							| 53 |  | simpr2r |  | 
						
							| 54 | 21 22 23 37 53 30 | mndtchom |  | 
						
							| 55 | 52 54 | eleqtrd |  | 
						
							| 56 | 9 33 | mndass |  | 
						
							| 57 | 22 55 42 32 56 | syl13anc |  | 
						
							| 58 | 21 22 23 24 25 53 26 | mndtcco |  | 
						
							| 59 | 21 22 23 25 37 53 26 | mndtcco |  | 
						
							| 60 | 59 | oveqd |  | 
						
							| 61 |  | eqidd |  | 
						
							| 62 | 58 60 61 | oveq123d |  | 
						
							| 63 | 21 22 23 24 37 53 26 | mndtcco |  | 
						
							| 64 |  | eqidd |  | 
						
							| 65 | 63 64 49 | oveq123d |  | 
						
							| 66 | 57 62 65 | 3eqtr4d |  | 
						
							| 67 | 3 4 5 7 8 20 36 45 51 66 | iscatd2 |  |