Metamath Proof Explorer


Theorem mnringvald

Description: Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringvald.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringvald.2 · ˙ = R
mnringvald.3 0 ˙ = 0 R
mnringvald.4 A = Base M
mnringvald.5 + ˙ = + M
mnringvald.6 V = R freeLMod A
mnringvald.7 B = Base V
mnringvald.8 φ R U
mnringvald.9 φ M W
Assertion mnringvald φ F = V sSet ndx x B , y B V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙

Proof

Step Hyp Ref Expression
1 mnringvald.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringvald.2 · ˙ = R
3 mnringvald.3 0 ˙ = 0 R
4 mnringvald.4 A = Base M
5 mnringvald.5 + ˙ = + M
6 mnringvald.6 V = R freeLMod A
7 mnringvald.7 B = Base V
8 mnringvald.8 φ R U
9 mnringvald.9 φ M W
10 8 elexd φ R V
11 9 elexd φ M V
12 nfv v r = R m = M
13 nfcvd r = R m = M _ v V sSet ndx x B , y B V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙
14 ovexd r = R m = M r freeLMod Base m V
15 simpr r = R m = M v = r freeLMod Base m v = r freeLMod Base m
16 simpll r = R m = M v = r freeLMod Base m r = R
17 fveq2 m = M Base m = Base M
18 17 4 eqtr4di m = M Base m = A
19 18 ad2antlr r = R m = M v = r freeLMod Base m Base m = A
20 16 19 oveq12d r = R m = M v = r freeLMod Base m r freeLMod Base m = R freeLMod A
21 15 20 eqtrd r = R m = M v = r freeLMod Base m v = R freeLMod A
22 21 6 eqtr4di r = R m = M v = r freeLMod Base m v = V
23 22 fveq2d r = R m = M v = r freeLMod Base m Base v = Base V
24 23 7 eqtr4di r = R m = M v = r freeLMod Base m Base v = B
25 fveq2 m = M + m = + M
26 25 5 eqtr4di m = M + m = + ˙
27 26 oveqd m = M a + m b = a + ˙ b
28 27 ad2antlr r = R m = M v = r freeLMod Base m a + m b = a + ˙ b
29 28 eqeq2d r = R m = M v = r freeLMod Base m i = a + m b i = a + ˙ b
30 fveq2 r = R r = R
31 30 2 eqtr4di r = R r = · ˙
32 31 oveqd r = R x a r y b = x a · ˙ y b
33 32 ad2antrr r = R m = M v = r freeLMod Base m x a r y b = x a · ˙ y b
34 fveq2 r = R 0 r = 0 R
35 34 3 eqtr4di r = R 0 r = 0 ˙
36 35 ad2antrr r = R m = M v = r freeLMod Base m 0 r = 0 ˙
37 29 33 36 ifbieq12d r = R m = M v = r freeLMod Base m if i = a + m b x a r y b 0 r = if i = a + ˙ b x a · ˙ y b 0 ˙
38 19 37 mpteq12dv r = R m = M v = r freeLMod Base m i Base m if i = a + m b x a r y b 0 r = i A if i = a + ˙ b x a · ˙ y b 0 ˙
39 19 19 38 mpoeq123dv r = R m = M v = r freeLMod Base m a Base m , b Base m i Base m if i = a + m b x a r y b 0 r = a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙
40 22 39 oveq12d r = R m = M v = r freeLMod Base m v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r = V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙
41 24 24 40 mpoeq123dv r = R m = M v = r freeLMod Base m x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r = x B , y B V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙
42 41 opeq2d r = R m = M v = r freeLMod Base m ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r = ndx x B , y B V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙
43 22 42 oveq12d r = R m = M v = r freeLMod Base m v sSet ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r = V sSet ndx x B , y B V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙
44 12 13 14 43 csbiedf r = R m = M r freeLMod Base m / v v sSet ndx x Base v , y Base v v a Base m , b Base m i Base m if i = a + m b x a r y b 0 r = V sSet ndx x B , y B V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙
45 df-mnring Could not format MndRing = ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) : No typesetting found for |- MndRing = ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) with typecode |-
46 ovex V sSet ndx x B , y B V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙ V
47 44 45 46 ovmpoa Could not format ( ( R e. _V /\ M e. _V ) -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) : No typesetting found for |- ( ( R e. _V /\ M e. _V ) -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) with typecode |-
48 10 11 47 syl2anc Could not format ( ph -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) : No typesetting found for |- ( ph -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) with typecode |-
49 1 48 eqtrid φ F = V sSet ndx x B , y B V a A , b A i A if i = a + ˙ b x a · ˙ y b 0 ˙