Metamath Proof Explorer


Theorem mnringvald

Description: Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringvald.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringvald.2 ·˙=R
mnringvald.3 0˙=0R
mnringvald.4 A=BaseM
mnringvald.5 +˙=+M
mnringvald.6 V=RfreeLModA
mnringvald.7 B=BaseV
mnringvald.8 φRU
mnringvald.9 φMW
Assertion mnringvald φF=VsSetndxxB,yBVaA,bAiAifi=a+˙bxa·˙yb0˙

Proof

Step Hyp Ref Expression
1 mnringvald.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringvald.2 ·˙=R
3 mnringvald.3 0˙=0R
4 mnringvald.4 A=BaseM
5 mnringvald.5 +˙=+M
6 mnringvald.6 V=RfreeLModA
7 mnringvald.7 B=BaseV
8 mnringvald.8 φRU
9 mnringvald.9 φMW
10 8 elexd φRV
11 9 elexd φMV
12 nfv vr=Rm=M
13 nfcvd r=Rm=M_vVsSetndxxB,yBVaA,bAiAifi=a+˙bxa·˙yb0˙
14 ovexd r=Rm=MrfreeLModBasemV
15 simpr r=Rm=Mv=rfreeLModBasemv=rfreeLModBasem
16 simpll r=Rm=Mv=rfreeLModBasemr=R
17 fveq2 m=MBasem=BaseM
18 17 4 eqtr4di m=MBasem=A
19 18 ad2antlr r=Rm=Mv=rfreeLModBasemBasem=A
20 16 19 oveq12d r=Rm=Mv=rfreeLModBasemrfreeLModBasem=RfreeLModA
21 15 20 eqtrd r=Rm=Mv=rfreeLModBasemv=RfreeLModA
22 21 6 eqtr4di r=Rm=Mv=rfreeLModBasemv=V
23 22 fveq2d r=Rm=Mv=rfreeLModBasemBasev=BaseV
24 23 7 eqtr4di r=Rm=Mv=rfreeLModBasemBasev=B
25 fveq2 m=M+m=+M
26 25 5 eqtr4di m=M+m=+˙
27 26 oveqd m=Ma+mb=a+˙b
28 27 ad2antlr r=Rm=Mv=rfreeLModBasema+mb=a+˙b
29 28 eqeq2d r=Rm=Mv=rfreeLModBasemi=a+mbi=a+˙b
30 fveq2 r=Rr=R
31 30 2 eqtr4di r=Rr=·˙
32 31 oveqd r=Rxaryb=xa·˙yb
33 32 ad2antrr r=Rm=Mv=rfreeLModBasemxaryb=xa·˙yb
34 fveq2 r=R0r=0R
35 34 3 eqtr4di r=R0r=0˙
36 35 ad2antrr r=Rm=Mv=rfreeLModBasem0r=0˙
37 29 33 36 ifbieq12d r=Rm=Mv=rfreeLModBasemifi=a+mbxaryb0r=ifi=a+˙bxa·˙yb0˙
38 19 37 mpteq12dv r=Rm=Mv=rfreeLModBasemiBasemifi=a+mbxaryb0r=iAifi=a+˙bxa·˙yb0˙
39 19 19 38 mpoeq123dv r=Rm=Mv=rfreeLModBasemaBasem,bBasemiBasemifi=a+mbxaryb0r=aA,bAiAifi=a+˙bxa·˙yb0˙
40 22 39 oveq12d r=Rm=Mv=rfreeLModBasemvaBasem,bBasemiBasemifi=a+mbxaryb0r=VaA,bAiAifi=a+˙bxa·˙yb0˙
41 24 24 40 mpoeq123dv r=Rm=Mv=rfreeLModBasemxBasev,yBasevvaBasem,bBasemiBasemifi=a+mbxaryb0r=xB,yBVaA,bAiAifi=a+˙bxa·˙yb0˙
42 41 opeq2d r=Rm=Mv=rfreeLModBasemndxxBasev,yBasevvaBasem,bBasemiBasemifi=a+mbxaryb0r=ndxxB,yBVaA,bAiAifi=a+˙bxa·˙yb0˙
43 22 42 oveq12d r=Rm=Mv=rfreeLModBasemvsSetndxxBasev,yBasevvaBasem,bBasemiBasemifi=a+mbxaryb0r=VsSetndxxB,yBVaA,bAiAifi=a+˙bxa·˙yb0˙
44 12 13 14 43 csbiedf r=Rm=MrfreeLModBasem/vvsSetndxxBasev,yBasevvaBasem,bBasemiBasemifi=a+mbxaryb0r=VsSetndxxB,yBVaA,bAiAifi=a+˙bxa·˙yb0˙
45 df-mnring Could not format MndRing = ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) : No typesetting found for |- MndRing = ( r e. _V , m e. _V |-> [_ ( r freeLMod ( Base ` m ) ) / v ]_ ( v sSet <. ( .r ` ndx ) , ( x e. ( Base ` v ) , y e. ( Base ` v ) |-> ( v gsum ( a e. ( Base ` m ) , b e. ( Base ` m ) |-> ( i e. ( Base ` m ) |-> if ( i = ( a ( +g ` m ) b ) , ( ( x ` a ) ( .r ` r ) ( y ` b ) ) , ( 0g ` r ) ) ) ) ) ) >. ) ) with typecode |-
46 ovex VsSetndxxB,yBVaA,bAiAifi=a+˙bxa·˙yb0˙V
47 44 45 46 ovmpoa Could not format ( ( R e. _V /\ M e. _V ) -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) : No typesetting found for |- ( ( R e. _V /\ M e. _V ) -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) with typecode |-
48 10 11 47 syl2anc Could not format ( ph -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) : No typesetting found for |- ( ph -> ( R MndRing M ) = ( V sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( V gsum ( a e. A , b e. A |-> ( i e. A |-> if ( i = ( a .+ b ) , ( ( x ` a ) .x. ( y ` b ) ) , .0. ) ) ) ) ) >. ) ) with typecode |-
49 1 48 eqtrid φF=VsSetndxxB,yBVaA,bAiAifi=a+˙bxa·˙yb0˙