| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnuprdlem1.1 |  | 
						
							| 2 |  | mnuprdlem1.3 |  | 
						
							| 3 |  | mnuprdlem1.4 |  | 
						
							| 4 |  | mnuprdlem1.8 |  | 
						
							| 5 |  | eleq1 |  | 
						
							| 6 | 5 | anbi1d |  | 
						
							| 7 | 6 | rexbidv |  | 
						
							| 8 |  | 0ex |  | 
						
							| 9 | 8 | prid1 |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 | 7 4 10 | rspcdva |  | 
						
							| 12 | 2 | adantr |  | 
						
							| 13 |  | simprl |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 |  | 0nep0 |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 3 | snn0d |  | 
						
							| 18 | 17 | necomd |  | 
						
							| 19 | 16 18 | nelprd |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 14 20 | elnelneqd |  | 
						
							| 22 | 21 | adantrr |  | 
						
							| 23 | 22 | adantrl |  | 
						
							| 24 |  | elpri |  | 
						
							| 25 | 24 1 | eleq2s |  | 
						
							| 26 | 25 | orcomd |  | 
						
							| 27 | 26 | ord |  | 
						
							| 28 | 13 23 27 | sylc |  | 
						
							| 29 | 28 | unieqd |  | 
						
							| 30 |  | snex |  | 
						
							| 31 | 8 30 | unipr |  | 
						
							| 32 |  | uncom |  | 
						
							| 33 |  | un0 |  | 
						
							| 34 | 31 32 33 | 3eqtri |  | 
						
							| 35 | 29 34 | eqtrdi |  | 
						
							| 36 |  | simprrr |  | 
						
							| 37 | 35 36 | eqsstrrd |  | 
						
							| 38 |  | snssg |  | 
						
							| 39 | 38 | biimprd |  | 
						
							| 40 | 12 37 39 | sylc |  | 
						
							| 41 |  | eleq2w |  | 
						
							| 42 |  | unieq |  | 
						
							| 43 | 42 | sseq1d |  | 
						
							| 44 | 41 43 | anbi12d |  | 
						
							| 45 | 11 40 44 | rexlimddvcbvw |  |