Description: Lemma for mnuprd . (Contributed by Rohan Ridenour, 11-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnuprdlem1.1 | |
|
mnuprdlem1.3 | |
||
mnuprdlem1.4 | |
||
mnuprdlem1.8 | |
||
Assertion | mnuprdlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuprdlem1.1 | |
|
2 | mnuprdlem1.3 | |
|
3 | mnuprdlem1.4 | |
|
4 | mnuprdlem1.8 | |
|
5 | eleq1 | |
|
6 | 5 | anbi1d | |
7 | 6 | rexbidv | |
8 | 0ex | |
|
9 | 8 | prid1 | |
10 | 9 | a1i | |
11 | 7 4 10 | rspcdva | |
12 | 2 | adantr | |
13 | simprl | |
|
14 | simpr | |
|
15 | 0nep0 | |
|
16 | 15 | a1i | |
17 | 3 | snn0d | |
18 | 17 | necomd | |
19 | 16 18 | nelprd | |
20 | 19 | adantr | |
21 | 14 20 | elnelneqd | |
22 | 21 | adantrr | |
23 | 22 | adantrl | |
24 | elpri | |
|
25 | 24 1 | eleq2s | |
26 | 25 | orcomd | |
27 | 26 | ord | |
28 | 13 23 27 | sylc | |
29 | 28 | unieqd | |
30 | snex | |
|
31 | 8 30 | unipr | |
32 | uncom | |
|
33 | un0 | |
|
34 | 31 32 33 | 3eqtri | |
35 | 29 34 | eqtrdi | |
36 | simprrr | |
|
37 | 35 36 | eqsstrrd | |
38 | snssg | |
|
39 | 38 | biimprd | |
40 | 12 37 39 | sylc | |
41 | eleq2w | |
|
42 | unieq | |
|
43 | 42 | sseq1d | |
44 | 41 43 | anbi12d | |
45 | 11 40 44 | rexlimddvcbvw | |