Metamath Proof Explorer


Theorem mnuprdlem1

Description: Lemma for mnuprd . (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses mnuprdlem1.1 F=AB
mnuprdlem1.3 φAU
mnuprdlem1.4 φBU
mnuprdlem1.8 φiuFiuuw
Assertion mnuprdlem1 φAw

Proof

Step Hyp Ref Expression
1 mnuprdlem1.1 F=AB
2 mnuprdlem1.3 φAU
3 mnuprdlem1.4 φBU
4 mnuprdlem1.8 φiuFiuuw
5 eleq1 i=iuu
6 5 anbi1d i=iuuwuuw
7 6 rexbidv i=uFiuuwuFuuw
8 0ex V
9 8 prid1
10 9 a1i φ
11 7 4 10 rspcdva φuFuuw
12 2 adantr φaFaawAU
13 simprl φaFaawaF
14 simpr φaa
15 0nep0
16 15 a1i φ
17 3 snn0d φB
18 17 necomd φB
19 16 18 nelprd φ¬B
20 19 adantr φa¬B
21 14 20 elnelneqd φa¬a=B
22 21 adantrr φaaw¬a=B
23 22 adantrl φaFaaw¬a=B
24 elpri aABa=Aa=B
25 24 1 eleq2s aFa=Aa=B
26 25 orcomd aFa=Ba=A
27 26 ord aF¬a=Ba=A
28 13 23 27 sylc φaFaawa=A
29 28 unieqd φaFaawa=A
30 snex AV
31 8 30 unipr A=A
32 uncom A=A
33 un0 A=A
34 31 32 33 3eqtri A=A
35 29 34 eqtrdi φaFaawa=A
36 simprrr φaFaawaw
37 35 36 eqsstrrd φaFaawAw
38 snssg AUAwAw
39 38 biimprd AUAwAw
40 12 37 39 sylc φaFaawAw
41 eleq2w u=aua
42 unieq u=au=a
43 42 sseq1d u=auwaw
44 41 43 anbi12d u=auuwaaw
45 11 40 44 rexlimddvcbvw φAw