Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | modid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modval | |
|
2 | 1 | adantr | |
3 | rerpdivcl | |
|
4 | 3 | adantr | |
5 | 4 | recnd | |
6 | addlid | |
|
7 | 6 | fveq2d | |
8 | 5 7 | syl | |
9 | rpregt0 | |
|
10 | divge0 | |
|
11 | 9 10 | sylan2 | |
12 | 11 | an32s | |
13 | 12 | adantrr | |
14 | simpr | |
|
15 | rpcn | |
|
16 | 15 | mulridd | |
17 | 16 | adantr | |
18 | 14 17 | breqtrrd | |
19 | 18 | ad2ant2l | |
20 | simpll | |
|
21 | 9 | ad2antlr | |
22 | 1re | |
|
23 | ltdivmul | |
|
24 | 22 23 | mp3an2 | |
25 | 20 21 24 | syl2anc | |
26 | 19 25 | mpbird | |
27 | 0z | |
|
28 | flbi2 | |
|
29 | 27 4 28 | sylancr | |
30 | 13 26 29 | mpbir2and | |
31 | 8 30 | eqtr3d | |
32 | 31 | oveq2d | |
33 | 15 | mul01d | |
34 | 33 | ad2antlr | |
35 | 32 34 | eqtrd | |
36 | 35 | oveq2d | |
37 | recn | |
|
38 | 37 | subid1d | |
39 | 38 | ad2antrr | |
40 | 36 39 | eqtrd | |
41 | 2 40 | eqtrd | |