Metamath Proof Explorer


Theorem mposn

Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019)

Ref Expression
Hypotheses mposn.f F=xA,yBC
mposn.a x=AC=D
mposn.b y=BD=E
Assertion mposn AVBWEUF=ABE

Proof

Step Hyp Ref Expression
1 mposn.f F=xA,yBC
2 mposn.a x=AC=D
3 mposn.b y=BD=E
4 xpsng AVBWA×B=AB
5 4 3adant3 AVBWEUA×B=AB
6 5 mpteq1d AVBWEUpA×B1stp/x2ndp/yC=pAB1stp/x2ndp/yC
7 mpompts xA,yBC=pA×B1stp/x2ndp/yC
8 1 7 eqtri F=pA×B1stp/x2ndp/yC
9 8 a1i AVBWEUF=pA×B1stp/x2ndp/yC
10 op2ndg AVBW2ndAB=B
11 fveq2 p=AB2ndp=2ndAB
12 11 eqcomd p=AB2ndAB=2ndp
13 12 eqeq1d p=AB2ndAB=B2ndp=B
14 10 13 syl5ibcom AVBWp=AB2ndp=B
15 14 3adant3 AVBWEUp=AB2ndp=B
16 15 imp AVBWEUp=AB2ndp=B
17 op1stg AVBW1stAB=A
18 fveq2 p=AB1stp=1stAB
19 18 eqcomd p=AB1stAB=1stp
20 19 eqeq1d p=AB1stAB=A1stp=A
21 17 20 syl5ibcom AVBWp=AB1stp=A
22 21 3adant3 AVBWEUp=AB1stp=A
23 22 imp AVBWEUp=AB1stp=A
24 simp1 AVBWEUAV
25 simpl2 AVBWEUx=ABW
26 2 adantl AVBWEUx=AC=D
27 26 3 sylan9eq AVBWEUx=Ay=BC=E
28 25 27 csbied AVBWEUx=AB/yC=E
29 24 28 csbied AVBWEUA/xB/yC=E
30 29 adantr AVBWEUp=ABA/xB/yC=E
31 csbeq1 1stp=A1stp/x2ndp/yC=A/x2ndp/yC
32 31 eqeq1d 1stp=A1stp/x2ndp/yC=EA/x2ndp/yC=E
33 32 adantl 2ndp=B1stp=A1stp/x2ndp/yC=EA/x2ndp/yC=E
34 csbeq1 2ndp=B2ndp/yC=B/yC
35 34 adantr 2ndp=B1stp=A2ndp/yC=B/yC
36 35 csbeq2dv 2ndp=B1stp=AA/x2ndp/yC=A/xB/yC
37 36 eqeq1d 2ndp=B1stp=AA/x2ndp/yC=EA/xB/yC=E
38 33 37 bitrd 2ndp=B1stp=A1stp/x2ndp/yC=EA/xB/yC=E
39 30 38 syl5ibrcom AVBWEUp=AB2ndp=B1stp=A1stp/x2ndp/yC=E
40 16 23 39 mp2and AVBWEUp=AB1stp/x2ndp/yC=E
41 opex ABV
42 41 a1i AVBWEUABV
43 simp3 AVBWEUEU
44 40 42 43 fmptsnd AVBWEUABE=pAB1stp/x2ndp/yC
45 6 9 44 3eqtr4d AVBWEUF=ABE