Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mposn.f | |
|
mposn.a | |
||
mposn.b | |
||
Assertion | mposn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mposn.f | |
|
2 | mposn.a | |
|
3 | mposn.b | |
|
4 | xpsng | |
|
5 | 4 | 3adant3 | |
6 | 5 | mpteq1d | |
7 | mpompts | |
|
8 | 1 7 | eqtri | |
9 | 8 | a1i | |
10 | op2ndg | |
|
11 | fveq2 | |
|
12 | 11 | eqcomd | |
13 | 12 | eqeq1d | |
14 | 10 13 | syl5ibcom | |
15 | 14 | 3adant3 | |
16 | 15 | imp | |
17 | op1stg | |
|
18 | fveq2 | |
|
19 | 18 | eqcomd | |
20 | 19 | eqeq1d | |
21 | 17 20 | syl5ibcom | |
22 | 21 | 3adant3 | |
23 | 22 | imp | |
24 | simp1 | |
|
25 | simpl2 | |
|
26 | 2 | adantl | |
27 | 26 3 | sylan9eq | |
28 | 25 27 | csbied | |
29 | 24 28 | csbied | |
30 | 29 | adantr | |
31 | csbeq1 | |
|
32 | 31 | eqeq1d | |
33 | 32 | adantl | |
34 | csbeq1 | |
|
35 | 34 | adantr | |
36 | 35 | csbeq2dv | |
37 | 36 | eqeq1d | |
38 | 33 37 | bitrd | |
39 | 30 38 | syl5ibrcom | |
40 | 16 23 39 | mp2and | |
41 | opex | |
|
42 | 41 | a1i | |
43 | simp3 | |
|
44 | 40 42 43 | fmptsnd | |
45 | 6 9 44 | 3eqtr4d | |