Metamath Proof Explorer


Theorem mreexexlemd

Description: This lemma is used to generate substitution instances of the induction hypothesis in mreexexd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexexlemd.1 φXJ
mreexexlemd.2 φFXH
mreexexlemd.3 φGXH
mreexexlemd.4 φFNGH
mreexexlemd.5 φFHI
mreexexlemd.6 φFKGK
mreexexlemd.7 φtu𝒫Xtv𝒫XtuKvKuNvtutIi𝒫vuiitI
Assertion mreexexlemd φj𝒫GFjjHI

Proof

Step Hyp Ref Expression
1 mreexexlemd.1 φXJ
2 mreexexlemd.2 φFXH
3 mreexexlemd.3 φGXH
4 mreexexlemd.4 φFNGH
5 mreexexlemd.5 φFHI
6 mreexexlemd.6 φFKGK
7 mreexexlemd.7 φtu𝒫Xtv𝒫XtuKvKuNvtutIi𝒫vuiitI
8 simplr t=hu=fv=gu=f
9 8 breq1d t=hu=fv=guKfK
10 simpr t=hu=fv=gv=g
11 10 breq1d t=hu=fv=gvKgK
12 9 11 orbi12d t=hu=fv=guKvKfKgK
13 simpll t=hu=fv=gt=h
14 10 13 uneq12d t=hu=fv=gvt=gh
15 14 fveq2d t=hu=fv=gNvt=Ngh
16 8 15 sseq12d t=hu=fv=guNvtfNgh
17 8 13 uneq12d t=hu=fv=gut=fh
18 17 eleq1d t=hu=fv=gutIfhI
19 12 16 18 3anbi123d t=hu=fv=guKvKuNvtutIfKgKfNghfhI
20 simpllr t=hu=fv=gi=ju=f
21 simpr t=hu=fv=gi=ji=j
22 20 21 breq12d t=hu=fv=gi=juifj
23 simplll t=hu=fv=gi=jt=h
24 21 23 uneq12d t=hu=fv=gi=jit=jh
25 24 eleq1d t=hu=fv=gi=jitIjhI
26 22 25 anbi12d t=hu=fv=gi=juiitIfjjhI
27 simplr t=hu=fv=gi=jv=g
28 27 pweqd t=hu=fv=gi=j𝒫v=𝒫g
29 26 28 cbvrexdva2 t=hu=fv=gi𝒫vuiitIj𝒫gfjjhI
30 19 29 imbi12d t=hu=fv=guKvKuNvtutIi𝒫vuiitIfKgKfNghfhIj𝒫gfjjhI
31 simpl t=hu=ft=h
32 31 difeq2d t=hu=fXt=Xh
33 32 pweqd t=hu=f𝒫Xt=𝒫Xh
34 33 adantr t=hu=fv=g𝒫Xt=𝒫Xh
35 30 34 cbvraldva2 t=hu=fv𝒫XtuKvKuNvtutIi𝒫vuiitIg𝒫XhfKgKfNghfhIj𝒫gfjjhI
36 35 33 cbvraldva2 t=hu𝒫Xtv𝒫XtuKvKuNvtutIi𝒫vuiitIf𝒫Xhg𝒫XhfKgKfNghfhIj𝒫gfjjhI
37 36 cbvalvw tu𝒫Xtv𝒫XtuKvKuNvtutIi𝒫vuiitIhf𝒫Xhg𝒫XhfKgKfNghfhIj𝒫gfjjhI
38 7 37 sylib φhf𝒫Xhg𝒫XhfKgKfNghfhIj𝒫gfjjhI
39 ssun2 HFH
40 39 a1i φHFH
41 5 40 ssexd φHV
42 1 difexd φXHV
43 42 2 sselpwd φF𝒫XH
44 43 adantr φh=HF𝒫XH
45 simpr φh=Hh=H
46 45 difeq2d φh=HXh=XH
47 46 pweqd φh=H𝒫Xh=𝒫XH
48 44 47 eleqtrrd φh=HF𝒫Xh
49 42 3 sselpwd φG𝒫XH
50 49 ad2antrr φh=Hf=FG𝒫XH
51 47 adantr φh=Hf=F𝒫Xh=𝒫XH
52 50 51 eleqtrrd φh=Hf=FG𝒫Xh
53 simplr φh=Hf=Fg=Gf=F
54 53 breq1d φh=Hf=Fg=GfKFK
55 simpr φh=Hf=Fg=Gg=G
56 55 breq1d φh=Hf=Fg=GgKGK
57 54 56 orbi12d φh=Hf=Fg=GfKgKFKGK
58 simpllr φh=Hf=Fg=Gh=H
59 55 58 uneq12d φh=Hf=Fg=Ggh=GH
60 59 fveq2d φh=Hf=Fg=GNgh=NGH
61 53 60 sseq12d φh=Hf=Fg=GfNghFNGH
62 53 58 uneq12d φh=Hf=Fg=Gfh=FH
63 62 eleq1d φh=Hf=Fg=GfhIFHI
64 57 61 63 3anbi123d φh=Hf=Fg=GfKgKfNghfhIFKGKFNGHFHI
65 55 pweqd φh=Hf=Fg=G𝒫g=𝒫G
66 53 breq1d φh=Hf=Fg=GfjFj
67 58 uneq2d φh=Hf=Fg=Gjh=jH
68 67 eleq1d φh=Hf=Fg=GjhIjHI
69 66 68 anbi12d φh=Hf=Fg=GfjjhIFjjHI
70 65 69 rexeqbidv φh=Hf=Fg=Gj𝒫gfjjhIj𝒫GFjjHI
71 64 70 imbi12d φh=Hf=Fg=GfKgKfNghfhIj𝒫gfjjhIFKGKFNGHFHIj𝒫GFjjHI
72 52 71 rspcdv φh=Hf=Fg𝒫XhfKgKfNghfhIj𝒫gfjjhIFKGKFNGHFHIj𝒫GFjjHI
73 48 72 rspcimdv φh=Hf𝒫Xhg𝒫XhfKgKfNghfhIj𝒫gfjjhIFKGKFNGHFHIj𝒫GFjjHI
74 41 73 spcimdv φhf𝒫Xhg𝒫XhfKgKfNghfhIj𝒫gfjjhIFKGKFNGHFHIj𝒫GFjjHI
75 38 74 mpd φFKGKFNGHFHIj𝒫GFjjHI
76 6 4 5 75 mp3and φj𝒫GFjjHI