Metamath Proof Explorer


Theorem mrsubff

Description: A substitution is a function from R to R . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v V=mVRT
mrsubvr.r R=mRExT
mrsubvr.s S=mRSubstT
Assertion mrsubff TWS:R𝑝𝑚VRR

Proof

Step Hyp Ref Expression
1 mrsubvr.v V=mVRT
2 mrsubvr.r R=mRExT
3 mrsubvr.s S=mRSubstT
4 fvex mCNTV
5 1 fvexi VV
6 4 5 unex mCNTVV
7 eqid freeMndmCNTV=freeMndmCNTV
8 7 frmdmnd mCNTVVfreeMndmCNTVMnd
9 6 8 mp1i TWfR𝑝𝑚VeRfreeMndmCNTVMnd
10 simpr TWfR𝑝𝑚VeReR
11 eqid mCNT=mCNT
12 11 1 2 mrexval TWR=WordmCNTV
13 12 ad2antrr TWfR𝑝𝑚VeRR=WordmCNTV
14 10 13 eleqtrd TWfR𝑝𝑚VeReWordmCNTV
15 elpmi fR𝑝𝑚Vf:domfRdomfV
16 15 simpld fR𝑝𝑚Vf:domfR
17 16 ad3antlr TWfR𝑝𝑚VeRvmCNTVf:domfR
18 17 ffvelcdmda TWfR𝑝𝑚VeRvmCNTVvdomffvR
19 13 ad2antrr TWfR𝑝𝑚VeRvmCNTVvdomfR=WordmCNTV
20 18 19 eleqtrd TWfR𝑝𝑚VeRvmCNTVvdomffvWordmCNTV
21 simplr TWfR𝑝𝑚VeRvmCNTV¬vdomfvmCNTV
22 21 s1cld TWfR𝑝𝑚VeRvmCNTV¬vdomf⟨“v”⟩WordmCNTV
23 20 22 ifclda TWfR𝑝𝑚VeRvmCNTVifvdomffv⟨“v”⟩WordmCNTV
24 23 fmpttd TWfR𝑝𝑚VeRvmCNTVifvdomffv⟨“v”⟩:mCNTVWordmCNTV
25 wrdco eWordmCNTVvmCNTVifvdomffv⟨“v”⟩:mCNTVWordmCNTVvmCNTVifvdomffv⟨“v”⟩eWordWordmCNTV
26 14 24 25 syl2anc TWfR𝑝𝑚VeRvmCNTVifvdomffv⟨“v”⟩eWordWordmCNTV
27 eqid BasefreeMndmCNTV=BasefreeMndmCNTV
28 7 27 frmdbas mCNTVVBasefreeMndmCNTV=WordmCNTV
29 6 28 ax-mp BasefreeMndmCNTV=WordmCNTV
30 29 eqcomi WordmCNTV=BasefreeMndmCNTV
31 30 gsumwcl freeMndmCNTVMndvmCNTVifvdomffv⟨“v”⟩eWordWordmCNTVfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩eWordmCNTV
32 9 26 31 syl2anc TWfR𝑝𝑚VeRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩eWordmCNTV
33 32 13 eleqtrrd TWfR𝑝𝑚VeRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩eR
34 33 fmpttd TWfR𝑝𝑚VeRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e:RR
35 2 fvexi RV
36 35 35 elmap eRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩eRReRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e:RR
37 34 36 sylibr TWfR𝑝𝑚VeRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩eRR
38 37 fmpttd TWfR𝑝𝑚VeRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e:R𝑝𝑚VRR
39 11 1 2 3 7 mrsubffval TWS=fR𝑝𝑚VeRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e
40 39 feq1d TWS:R𝑝𝑚VRRfR𝑝𝑚VeRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e:R𝑝𝑚VRR
41 38 40 mpbird TWS:R𝑝𝑚VRR