Metamath Proof Explorer


Theorem mulgfvalALT

Description: Shorter proof of mulgfval using ax-rep . (Contributed by Mario Carneiro, 11-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mulgval.b B = Base G
mulgval.p + ˙ = + G
mulgval.o 0 ˙ = 0 G
mulgval.i I = inv g G
mulgval.t · ˙ = G
Assertion mulgfvalALT · ˙ = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n

Proof

Step Hyp Ref Expression
1 mulgval.b B = Base G
2 mulgval.p + ˙ = + G
3 mulgval.o 0 ˙ = 0 G
4 mulgval.i I = inv g G
5 mulgval.t · ˙ = G
6 eqidd w = G =
7 fveq2 w = G Base w = Base G
8 7 1 syl6eqr w = G Base w = B
9 fveq2 w = G 0 w = 0 G
10 9 3 syl6eqr w = G 0 w = 0 ˙
11 seqex seq 1 + w × x V
12 11 a1i w = G seq 1 + w × x V
13 id s = seq 1 + w × x s = seq 1 + w × x
14 fveq2 w = G + w = + G
15 14 2 syl6eqr w = G + w = + ˙
16 15 seqeq2d w = G seq 1 + w × x = seq 1 + ˙ × x
17 13 16 sylan9eqr w = G s = seq 1 + w × x s = seq 1 + ˙ × x
18 17 fveq1d w = G s = seq 1 + w × x s n = seq 1 + ˙ × x n
19 simpl w = G s = seq 1 + w × x w = G
20 19 fveq2d w = G s = seq 1 + w × x inv g w = inv g G
21 20 4 syl6eqr w = G s = seq 1 + w × x inv g w = I
22 17 fveq1d w = G s = seq 1 + w × x s n = seq 1 + ˙ × x n
23 21 22 fveq12d w = G s = seq 1 + w × x inv g w s n = I seq 1 + ˙ × x n
24 18 23 ifeq12d w = G s = seq 1 + w × x if 0 < n s n inv g w s n = if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
25 12 24 csbied w = G seq 1 + w × x / s if 0 < n s n inv g w s n = if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
26 10 25 ifeq12d w = G if n = 0 0 w seq 1 + w × x / s if 0 < n s n inv g w s n = if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
27 6 8 26 mpoeq123dv w = G n , x Base w if n = 0 0 w seq 1 + w × x / s if 0 < n s n inv g w s n = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
28 df-mulg 𝑔 = w V n , x Base w if n = 0 0 w seq 1 + w × x / s if 0 < n s n inv g w s n
29 zex V
30 1 fvexi B V
31 29 30 mpoex n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n V
32 27 28 31 fvmpt G V G = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
33 fvprc ¬ G V G =
34 eqid n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
35 3 fvexi 0 ˙ V
36 fvex seq 1 + ˙ × x n V
37 fvex I seq 1 + ˙ × x n V
38 36 37 ifex if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n V
39 35 38 ifex if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n V
40 34 39 fnmpoi n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn × B
41 fvprc ¬ G V Base G =
42 1 41 syl5eq ¬ G V B =
43 42 xpeq2d ¬ G V × B = ×
44 xp0 × =
45 43 44 syl6eq ¬ G V × B =
46 45 fneq2d ¬ G V n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn × B n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn
47 40 46 mpbii ¬ G V n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn
48 fn0 n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n =
49 47 48 sylib ¬ G V n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n =
50 33 49 eqtr4d ¬ G V G = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
51 32 50 pm2.61i G = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
52 5 51 eqtri · ˙ = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n