Metamath Proof Explorer


Theorem mzpindd

Description: "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Hypotheses mzpindd.co φ f χ
mzpindd.pr φ f V θ
mzpindd.ad φ f : V τ g : V η ζ
mzpindd.mu φ f : V τ g : V η σ
mzpindd.1 x = V × f ψ χ
mzpindd.2 x = g V g f ψ θ
mzpindd.3 x = f ψ τ
mzpindd.4 x = g ψ η
mzpindd.5 x = f + f g ψ ζ
mzpindd.6 x = f × f g ψ σ
mzpindd.7 x = A ψ ρ
Assertion mzpindd φ A mzPoly V ρ

Proof

Step Hyp Ref Expression
1 mzpindd.co φ f χ
2 mzpindd.pr φ f V θ
3 mzpindd.ad φ f : V τ g : V η ζ
4 mzpindd.mu φ f : V τ g : V η σ
5 mzpindd.1 x = V × f ψ χ
6 mzpindd.2 x = g V g f ψ θ
7 mzpindd.3 x = f ψ τ
8 mzpindd.4 x = g ψ η
9 mzpindd.5 x = f + f g ψ ζ
10 mzpindd.6 x = f × f g ψ σ
11 mzpindd.7 x = A ψ ρ
12 elfvex A mzPoly V V V
13 12 adantl φ A mzPoly V V V
14 mzpval V V mzPoly V = mzPolyCld V
15 14 adantl φ V V mzPoly V = mzPolyCld V
16 ssrab2 x V | ψ V
17 16 a1i φ V V x V | ψ V
18 ovex V V
19 zex V
20 18 19 constmap f V × f V
21 20 adantl φ f V × f V
22 5 elrab V × f x V | ψ V × f V χ
23 21 1 22 sylanbrc φ f V × f x V | ψ
24 23 ralrimiva φ f V × f x V | ψ
25 24 adantr φ V V f V × f x V | ψ
26 19 a1i φ V V f V g V V
27 simpllr φ V V f V g V V V
28 simpr φ V V f V g V g V
29 elmapg V V V g V g : V
30 29 biimpa V V V g V g : V
31 26 27 28 30 syl21anc φ V V f V g V g : V
32 simplr φ V V f V g V f V
33 31 32 ffvelrnd φ V V f V g V g f
34 33 fmpttd φ V V f V g V g f : V
35 19 18 elmap g V g f V g V g f : V
36 34 35 sylibr φ V V f V g V g f V
37 2 adantlr φ V V f V θ
38 6 elrab g V g f x V | ψ g V g f V θ
39 36 37 38 sylanbrc φ V V f V g V g f x V | ψ
40 39 ralrimiva φ V V f V g V g f x V | ψ
41 25 40 jca φ V V f V × f x V | ψ f V g V g f x V | ψ
42 zaddcl a b a + b
43 42 adantl f : V g : V a b a + b
44 simpl f : V g : V f : V
45 simpr f : V g : V g : V
46 18 a1i f : V g : V V V
47 inidm V V = V
48 43 44 45 46 46 47 off f : V g : V f + f g : V
49 48 ad2ant2r f : V τ g : V η f + f g : V
50 49 adantl φ f : V τ g : V η f + f g : V
51 3 3expb φ f : V τ g : V η ζ
52 50 51 jca φ f : V τ g : V η f + f g : V ζ
53 zmulcl a b a b
54 53 adantl f : V g : V a b a b
55 54 44 45 46 46 47 off f : V g : V f × f g : V
56 55 ad2ant2r f : V τ g : V η f × f g : V
57 56 adantl φ f : V τ g : V η f × f g : V
58 4 3expb φ f : V τ g : V η σ
59 52 57 58 jca32 φ f : V τ g : V η f + f g : V ζ f × f g : V σ
60 59 ex φ f : V τ g : V η f + f g : V ζ f × f g : V σ
61 19 18 elmap f V f : V
62 61 anbi1i f V τ f : V τ
63 19 18 elmap g V g : V
64 63 anbi1i g V η g : V η
65 62 64 anbi12i f V τ g V η f : V τ g : V η
66 19 18 elmap f + f g V f + f g : V
67 66 anbi1i f + f g V ζ f + f g : V ζ
68 19 18 elmap f × f g V f × f g : V
69 68 anbi1i f × f g V σ f × f g : V σ
70 67 69 anbi12i f + f g V ζ f × f g V σ f + f g : V ζ f × f g : V σ
71 60 65 70 3imtr4g φ f V τ g V η f + f g V ζ f × f g V σ
72 7 elrab f x V | ψ f V τ
73 8 elrab g x V | ψ g V η
74 72 73 anbi12i f x V | ψ g x V | ψ f V τ g V η
75 9 elrab f + f g x V | ψ f + f g V ζ
76 10 elrab f × f g x V | ψ f × f g V σ
77 75 76 anbi12i f + f g x V | ψ f × f g x V | ψ f + f g V ζ f × f g V σ
78 71 74 77 3imtr4g φ f x V | ψ g x V | ψ f + f g x V | ψ f × f g x V | ψ
79 78 ralrimivv φ f x V | ψ g x V | ψ f + f g x V | ψ f × f g x V | ψ
80 79 adantr φ V V f x V | ψ g x V | ψ f + f g x V | ψ f × f g x V | ψ
81 17 41 80 jca32 φ V V x V | ψ V f V × f x V | ψ f V g V g f x V | ψ f x V | ψ g x V | ψ f + f g x V | ψ f × f g x V | ψ
82 elmzpcl V V x V | ψ mzPolyCld V x V | ψ V f V × f x V | ψ f V g V g f x V | ψ f x V | ψ g x V | ψ f + f g x V | ψ f × f g x V | ψ
83 82 adantl φ V V x V | ψ mzPolyCld V x V | ψ V f V × f x V | ψ f V g V g f x V | ψ f x V | ψ g x V | ψ f + f g x V | ψ f × f g x V | ψ
84 81 83 mpbird φ V V x V | ψ mzPolyCld V
85 intss1 x V | ψ mzPolyCld V mzPolyCld V x V | ψ
86 84 85 syl φ V V mzPolyCld V x V | ψ
87 15 86 eqsstrd φ V V mzPoly V x V | ψ
88 87 sselda φ V V A mzPoly V A x V | ψ
89 88 an32s φ A mzPoly V V V A x V | ψ
90 13 89 mpdan φ A mzPoly V A x V | ψ
91 11 elrab A x V | ψ A V ρ
92 91 simprbi A x V | ψ ρ
93 90 92 syl φ A mzPoly V ρ