Metamath Proof Explorer


Theorem naddcnfid2

Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion naddcnfid2 XOnS=domωCNFXFSX×+𝑜fF=F

Proof

Step Hyp Ref Expression
1 peano1 ω
2 fconst6g ωX×:Xω
3 1 2 mp1i XOnS=domωCNFXX×:Xω
4 simpl XOnS=domωCNFXXOn
5 1 a1i XOnS=domωCNFXω
6 4 5 fczfsuppd XOnS=domωCNFXfinSuppX×
7 simpr XOnS=domωCNFXS=domωCNFX
8 7 eleq2d XOnS=domωCNFXX×SX×domωCNFX
9 eqid domωCNFX=domωCNFX
10 omelon ωOn
11 10 a1i XOnS=domωCNFXωOn
12 9 11 4 cantnfs XOnS=domωCNFXX×domωCNFXX×:XωfinSuppX×
13 8 12 bitrd XOnS=domωCNFXX×SX×:XωfinSuppX×
14 3 6 13 mpbir2and XOnS=domωCNFXX×S
15 naddcnfcom XOnS=domωCNFXX×SFSX×+𝑜fF=F+𝑜fX×
16 15 ex XOnS=domωCNFXX×SFSX×+𝑜fF=F+𝑜fX×
17 14 16 mpand XOnS=domωCNFXFSX×+𝑜fF=F+𝑜fX×
18 17 imp XOnS=domωCNFXFSX×+𝑜fF=F+𝑜fX×
19 naddcnfid1 XOnS=domωCNFXFSF+𝑜fX×=F
20 18 19 eqtrd XOnS=domωCNFXFSX×+𝑜fF=F