Description: From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007) (Revised by AV, 8-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ncvs1.x | |
|
ncvs1.n | |
||
ncvs1.z | |
||
ncvs1.s | |
||
ncvs1.f | |
||
ncvs1.k | |
||
Assertion | ncvs1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncvs1.x | |
|
2 | ncvs1.n | |
|
3 | ncvs1.z | |
|
4 | ncvs1.s | |
|
5 | ncvs1.f | |
|
6 | ncvs1.k | |
|
7 | simp1 | |
|
8 | simp3 | |
|
9 | elin | |
|
10 | nvcnlm | |
|
11 | nlmngp | |
|
12 | 10 11 | syl | |
13 | 12 | adantr | |
14 | 9 13 | sylbi | |
15 | simpl | |
|
16 | 14 15 | anim12i | |
17 | 1 2 | nmcl | |
18 | 16 17 | syl | |
19 | 1 2 3 | nmeq0 | |
20 | 19 | bicomd | |
21 | 14 20 | sylan | |
22 | 21 | necon3bid | |
23 | 22 | biimpd | |
24 | 23 | impr | |
25 | 18 24 | rereccld | |
26 | 25 | 3adant3 | |
27 | 8 26 | elind | |
28 | 1re | |
|
29 | 0le1 | |
|
30 | 28 29 | pm3.2i | |
31 | 30 | a1i | |
32 | simprr | |
|
33 | 1 2 3 | nmgt0 | |
34 | 16 33 | syl | |
35 | 32 34 | mpbid | |
36 | 31 18 35 | jca32 | |
37 | 36 | 3adant3 | |
38 | divge0 | |
|
39 | 37 38 | syl | |
40 | simp2l | |
|
41 | 1 2 4 5 6 | ncvsge0 | |
42 | 7 27 39 40 41 | syl121anc | |
43 | 16 | 3adant3 | |
44 | 43 17 | syl | |
45 | 44 | recnd | |
46 | 24 | 3adant3 | |
47 | 45 46 | recid2d | |
48 | 42 47 | eqtrd | |