Metamath Proof Explorer


Theorem ncvs1

Description: From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvs1.x X=BaseG
ncvs1.n N=normG
ncvs1.z 0˙=0G
ncvs1.s ·˙=G
ncvs1.f F=ScalarG
ncvs1.k K=BaseF
Assertion ncvs1 GNrmVecℂVecAXA0˙1NAKN1NA·˙A=1

Proof

Step Hyp Ref Expression
1 ncvs1.x X=BaseG
2 ncvs1.n N=normG
3 ncvs1.z 0˙=0G
4 ncvs1.s ·˙=G
5 ncvs1.f F=ScalarG
6 ncvs1.k K=BaseF
7 simp1 GNrmVecℂVecAXA0˙1NAKGNrmVecℂVec
8 simp3 GNrmVecℂVecAXA0˙1NAK1NAK
9 elin GNrmVecℂVecGNrmVecGℂVec
10 nvcnlm GNrmVecGNrmMod
11 nlmngp GNrmModGNrmGrp
12 10 11 syl GNrmVecGNrmGrp
13 12 adantr GNrmVecGℂVecGNrmGrp
14 9 13 sylbi GNrmVecℂVecGNrmGrp
15 simpl AXA0˙AX
16 14 15 anim12i GNrmVecℂVecAXA0˙GNrmGrpAX
17 1 2 nmcl GNrmGrpAXNA
18 16 17 syl GNrmVecℂVecAXA0˙NA
19 1 2 3 nmeq0 GNrmGrpAXNA=0A=0˙
20 19 bicomd GNrmGrpAXA=0˙NA=0
21 14 20 sylan GNrmVecℂVecAXA=0˙NA=0
22 21 necon3bid GNrmVecℂVecAXA0˙NA0
23 22 biimpd GNrmVecℂVecAXA0˙NA0
24 23 impr GNrmVecℂVecAXA0˙NA0
25 18 24 rereccld GNrmVecℂVecAXA0˙1NA
26 25 3adant3 GNrmVecℂVecAXA0˙1NAK1NA
27 8 26 elind GNrmVecℂVecAXA0˙1NAK1NAK
28 1re 1
29 0le1 01
30 28 29 pm3.2i 101
31 30 a1i GNrmVecℂVecAXA0˙101
32 simprr GNrmVecℂVecAXA0˙A0˙
33 1 2 3 nmgt0 GNrmGrpAXA0˙0<NA
34 16 33 syl GNrmVecℂVecAXA0˙A0˙0<NA
35 32 34 mpbid GNrmVecℂVecAXA0˙0<NA
36 31 18 35 jca32 GNrmVecℂVecAXA0˙101NA0<NA
37 36 3adant3 GNrmVecℂVecAXA0˙1NAK101NA0<NA
38 divge0 101NA0<NA01NA
39 37 38 syl GNrmVecℂVecAXA0˙1NAK01NA
40 simp2l GNrmVecℂVecAXA0˙1NAKAX
41 1 2 4 5 6 ncvsge0 GNrmVecℂVec1NAK01NAAXN1NA·˙A=1NANA
42 7 27 39 40 41 syl121anc GNrmVecℂVecAXA0˙1NAKN1NA·˙A=1NANA
43 16 3adant3 GNrmVecℂVecAXA0˙1NAKGNrmGrpAX
44 43 17 syl GNrmVecℂVecAXA0˙1NAKNA
45 44 recnd GNrmVecℂVecAXA0˙1NAKNA
46 24 3adant3 GNrmVecℂVecAXA0˙1NAKNA0
47 45 46 recid2d GNrmVecℂVecAXA0˙1NAK1NANA=1
48 42 47 eqtrd GNrmVecℂVecAXA0˙1NAKN1NA·˙A=1