Metamath Proof Explorer


Theorem negfi

Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020)

Ref Expression
Assertion negfi A A Fin n | n A Fin

Proof

Step Hyp Ref Expression
1 ssel A a A a
2 renegcl a a
3 1 2 syl6 A a A a
4 3 ralrimiv A a A a
5 dmmptg a A a dom a A a = A
6 4 5 syl A dom a A a = A
7 6 eqcomd A A = dom a A a
8 7 eleq1d A A Fin dom a A a Fin
9 funmpt Fun a A a
10 fundmfibi Fun a A a a A a Fin dom a A a Fin
11 9 10 mp1i A a A a Fin dom a A a Fin
12 8 11 bitr4d A A Fin a A a Fin
13 reex V
14 13 ssex A A V
15 14 mptexd A a A a V
16 eqid a A a = a A a
17 16 negf1o A a A a : A 1-1 onto x | x A
18 f1of1 a A a : A 1-1 onto x | x A a A a : A 1-1 x | x A
19 17 18 syl A a A a : A 1-1 x | x A
20 f1vrnfibi a A a V a A a : A 1-1 x | x A a A a Fin ran a A a Fin
21 15 19 20 syl2anc A a A a Fin ran a A a Fin
22 1 imp A a A a
23 2 adantl A a A a a
24 recn a a
25 24 negnegd a a = a
26 25 eqcomd a a = a
27 26 eleq1d a a A a A
28 27 biimpcd a A a a A
29 28 adantl A a A a a A
30 29 imp A a A a a A
31 23 30 jca A a A a a a A
32 22 31 mpdan A a A a a A
33 eleq1 n = a n a
34 negeq n = a n = a
35 34 eleq1d n = a n A a A
36 33 35 anbi12d n = a n n A a a A
37 32 36 syl5ibrcom A a A n = a n n A
38 37 rexlimdva A a A n = a n n A
39 simprr A n n A n A
40 negeq a = n a = n
41 40 eqeq2d a = n n = a n = n
42 41 adantl A n n A a = n n = a n = n
43 recn n n
44 negneg n n = n
45 44 eqcomd n n = n
46 43 45 syl n n = n
47 46 ad2antrl A n n A n = n
48 39 42 47 rspcedvd A n n A a A n = a
49 48 ex A n n A a A n = a
50 38 49 impbid A a A n = a n n A
51 50 abbidv A n | a A n = a = n | n n A
52 16 rnmpt ran a A a = n | a A n = a
53 df-rab n | n A = n | n n A
54 51 52 53 3eqtr4g A ran a A a = n | n A
55 54 eleq1d A ran a A a Fin n | n A Fin
56 12 21 55 3bitrd A A Fin n | n A Fin
57 56 biimpa A A Fin n | n A Fin