Metamath Proof Explorer


Theorem neiptopuni

Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 6-Jan-2018)

Ref Expression
Hypotheses neiptop.o J=a𝒫X|paaNp
neiptop.0 φN:X𝒫𝒫X
neiptop.1 φpXabbXaNpbNp
neiptop.2 φpXfiNpNp
neiptop.3 φpXaNppa
neiptop.4 φpXaNpbNpqbaNq
neiptop.5 φpXXNp
Assertion neiptopuni φX=J

Proof

Step Hyp Ref Expression
1 neiptop.o J=a𝒫X|paaNp
2 neiptop.0 φN:X𝒫𝒫X
3 neiptop.1 φpXabbXaNpbNp
4 neiptop.2 φpXfiNpNp
5 neiptop.3 φpXaNppa
6 neiptop.4 φpXaNpbNpqbaNq
7 neiptop.5 φpXXNp
8 elpwi a𝒫XaX
9 8 ad2antlr pJa𝒫XpaaX
10 simpr pJa𝒫Xpapa
11 9 10 sseldd pJa𝒫XpapX
12 1 unieqi J=a𝒫X|paaNp
13 12 eleq2i pJpa𝒫X|paaNp
14 elunirab pa𝒫X|paaNpa𝒫XpapaaNp
15 13 14 bitri pJa𝒫XpapaaNp
16 simpl papaaNppa
17 16 reximi a𝒫XpapaaNpa𝒫Xpa
18 15 17 sylbi pJa𝒫Xpa
19 11 18 r19.29a pJpX
20 19 a1i φpJpX
21 20 ssrdv φJX
22 ssidd φXX
23 7 ralrimiva φpXXNp
24 1 neipeltop XJXXpXXNp
25 22 23 24 sylanbrc φXJ
26 unissel JXXJJ=X
27 21 25 26 syl2anc φJ=X
28 27 eqcomd φX=J