Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 6-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | neiptop.o | |
|
neiptop.0 | |
||
neiptop.1 | |
||
neiptop.2 | |
||
neiptop.3 | |
||
neiptop.4 | |
||
neiptop.5 | |
||
Assertion | neiptopuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neiptop.o | |
|
2 | neiptop.0 | |
|
3 | neiptop.1 | |
|
4 | neiptop.2 | |
|
5 | neiptop.3 | |
|
6 | neiptop.4 | |
|
7 | neiptop.5 | |
|
8 | elpwi | |
|
9 | 8 | ad2antlr | |
10 | simpr | |
|
11 | 9 10 | sseldd | |
12 | 1 | unieqi | |
13 | 12 | eleq2i | |
14 | elunirab | |
|
15 | 13 14 | bitri | |
16 | simpl | |
|
17 | 16 | reximi | |
18 | 15 17 | sylbi | |
19 | 11 18 | r19.29a | |
20 | 19 | a1i | |
21 | 20 | ssrdv | |
22 | ssidd | |
|
23 | 7 | ralrimiva | |
24 | 1 | neipeltop | |
25 | 22 23 24 | sylanbrc | |
26 | unissel | |
|
27 | 21 25 26 | syl2anc | |
28 | 27 | eqcomd | |