Description: An open subspace of an n-locally A space is also n-locally A . (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nllyrest | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nllytop | |
|
2 | resttop | |
|
3 | 1 2 | sylan | |
4 | restopn2 | |
|
5 | 1 4 | sylan | |
6 | simp1l | |
|
7 | simp2l | |
|
8 | simp3 | |
|
9 | nlly2i | |
|
10 | 6 7 8 9 | syl3anc | |
11 | 3 | 3ad2ant1 | |
12 | 11 | 3ad2ant1 | |
13 | simp3l | |
|
14 | simp3r2 | |
|
15 | simp2 | |
|
16 | 15 | elpwid | |
17 | simp12r | |
|
18 | 16 17 | sstrd | |
19 | 14 18 | sstrd | |
20 | 6 | 3ad2ant1 | |
21 | 20 1 | syl | |
22 | simp11r | |
|
23 | restopn2 | |
|
24 | 21 22 23 | syl2anc | |
25 | 13 19 24 | mpbir2and | |
26 | simp3r1 | |
|
27 | opnneip | |
|
28 | 12 25 26 27 | syl3anc | |
29 | elssuni | |
|
30 | 22 29 | syl | |
31 | eqid | |
|
32 | 31 | restuni | |
33 | 21 30 32 | syl2anc | |
34 | 18 33 | sseqtrd | |
35 | eqid | |
|
36 | 35 | ssnei2 | |
37 | 12 28 14 34 36 | syl22anc | |
38 | 37 15 | elind | |
39 | restabs | |
|
40 | 21 18 22 39 | syl3anc | |
41 | simp3r3 | |
|
42 | 40 41 | eqeltrd | |
43 | 38 42 | jca | |
44 | 43 | 3expa | |
45 | 44 | rexlimdvaa | |
46 | 45 | expimpd | |
47 | 46 | reximdv2 | |
48 | 10 47 | mpd | |
49 | 48 | 3expa | |
50 | 49 | ralrimiva | |
51 | 50 | ex | |
52 | 5 51 | sylbid | |
53 | 52 | ralrimiv | |
54 | isnlly | |
|
55 | 3 53 54 | sylanbrc | |