Metamath Proof Explorer


Theorem nllyrest

Description: An open subspace of an n-locally A space is also n-locally A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyrest JN-Locally A BJ J𝑡BN-Locally A

Proof

Step Hyp Ref Expression
1 nllytop JN-Locally A JTop
2 resttop JTopBJJ𝑡BTop
3 1 2 sylan JN-Locally A BJ J𝑡BTop
4 restopn2 JTopBJxJ𝑡BxJxB
5 1 4 sylan JN-Locally A BJ xJ𝑡BxJxB
6 simp1l JN-Locally A BJ xJxB yx JN-Locally A
7 simp2l JN-Locally A BJ xJxB yx xJ
8 simp3 JN-Locally A BJ xJxB yx yx
9 nlly2i JN-Locally A xJ yx s𝒫xuJyuusJ𝑡sA
10 6 7 8 9 syl3anc JN-Locally A BJ xJxB yx s𝒫xuJyuusJ𝑡sA
11 3 3ad2ant1 JN-Locally A BJ xJxB yx J𝑡BTop
12 11 3ad2ant1 JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA J𝑡BTop
13 simp3l JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA uJ
14 simp3r2 JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA us
15 simp2 JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA s𝒫x
16 15 elpwid JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA sx
17 simp12r JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA xB
18 16 17 sstrd JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA sB
19 14 18 sstrd JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA uB
20 6 3ad2ant1 JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA JN-Locally A
21 20 1 syl JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA JTop
22 simp11r JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA BJ
23 restopn2 JTopBJuJ𝑡BuJuB
24 21 22 23 syl2anc JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA uJ𝑡BuJuB
25 13 19 24 mpbir2and JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA uJ𝑡B
26 simp3r1 JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA yu
27 opnneip J𝑡BTopuJ𝑡ByuuneiJ𝑡By
28 12 25 26 27 syl3anc JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA uneiJ𝑡By
29 elssuni BJBJ
30 22 29 syl JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA BJ
31 eqid J=J
32 31 restuni JTopBJB=J𝑡B
33 21 30 32 syl2anc JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA B=J𝑡B
34 18 33 sseqtrd JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA sJ𝑡B
35 eqid J𝑡B=J𝑡B
36 35 ssnei2 J𝑡BTopuneiJ𝑡ByussJ𝑡BsneiJ𝑡By
37 12 28 14 34 36 syl22anc JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA sneiJ𝑡By
38 37 15 elind JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA sneiJ𝑡By𝒫x
39 restabs JTopsBBJJ𝑡B𝑡s=J𝑡s
40 21 18 22 39 syl3anc JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA J𝑡B𝑡s=J𝑡s
41 simp3r3 JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA J𝑡sA
42 40 41 eqeltrd JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA J𝑡B𝑡sA
43 38 42 jca JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA sneiJ𝑡By𝒫xJ𝑡B𝑡sA
44 43 3expa JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sA sneiJ𝑡By𝒫xJ𝑡B𝑡sA
45 44 rexlimdvaa JN-Locally A BJ xJxB yx s𝒫x uJyuusJ𝑡sAsneiJ𝑡By𝒫xJ𝑡B𝑡sA
46 45 expimpd JN-Locally A BJ xJxB yx s𝒫xuJyuusJ𝑡sAsneiJ𝑡By𝒫xJ𝑡B𝑡sA
47 46 reximdv2 JN-Locally A BJ xJxB yx s𝒫xuJyuusJ𝑡sAsneiJ𝑡By𝒫xJ𝑡B𝑡sA
48 10 47 mpd JN-Locally A BJ xJxB yx sneiJ𝑡By𝒫xJ𝑡B𝑡sA
49 48 3expa JN-Locally A BJ xJxB yx sneiJ𝑡By𝒫xJ𝑡B𝑡sA
50 49 ralrimiva JN-Locally A BJ xJxB yxsneiJ𝑡By𝒫xJ𝑡B𝑡sA
51 50 ex JN-Locally A BJ xJxByxsneiJ𝑡By𝒫xJ𝑡B𝑡sA
52 5 51 sylbid JN-Locally A BJ xJ𝑡ByxsneiJ𝑡By𝒫xJ𝑡B𝑡sA
53 52 ralrimiv JN-Locally A BJ xJ𝑡ByxsneiJ𝑡By𝒫xJ𝑡B𝑡sA
54 isnlly J𝑡BN-Locally A J𝑡BTopxJ𝑡ByxsneiJ𝑡By𝒫xJ𝑡B𝑡sA
55 3 53 54 sylanbrc JN-Locally A BJ J𝑡BN-Locally A