| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmbdoplb.1 |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
fveq2d |
|
| 4 |
|
fveq2 |
|
| 5 |
4
|
oveq2d |
|
| 6 |
3 5
|
breq12d |
|
| 7 |
|
bdopln |
|
| 8 |
1 7
|
ax-mp |
|
| 9 |
8
|
lnopfi |
|
| 10 |
9
|
ffvelcdmi |
|
| 11 |
|
normcl |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
recnd |
|
| 15 |
|
normcl |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
recnd |
|
| 18 |
|
normne0 |
|
| 19 |
18
|
biimpar |
|
| 20 |
14 17 19
|
divrec2d |
|
| 21 |
16 19
|
rereccld |
|
| 22 |
21
|
recnd |
|
| 23 |
|
simpl |
|
| 24 |
8
|
lnopmuli |
|
| 25 |
22 23 24
|
syl2anc |
|
| 26 |
25
|
fveq2d |
|
| 27 |
10
|
adantr |
|
| 28 |
|
norm-iii |
|
| 29 |
22 27 28
|
syl2anc |
|
| 30 |
|
normgt0 |
|
| 31 |
30
|
biimpa |
|
| 32 |
16 31
|
recgt0d |
|
| 33 |
|
0re |
|
| 34 |
|
ltle |
|
| 35 |
33 34
|
mpan |
|
| 36 |
21 32 35
|
sylc |
|
| 37 |
21 36
|
absidd |
|
| 38 |
37
|
oveq1d |
|
| 39 |
26 29 38
|
3eqtrrd |
|
| 40 |
20 39
|
eqtrd |
|
| 41 |
|
hvmulcl |
|
| 42 |
22 23 41
|
syl2anc |
|
| 43 |
|
normcl |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
norm1 |
|
| 46 |
|
eqle |
|
| 47 |
44 45 46
|
syl2anc |
|
| 48 |
|
nmoplb |
|
| 49 |
9 48
|
mp3an1 |
|
| 50 |
42 47 49
|
syl2anc |
|
| 51 |
40 50
|
eqbrtrd |
|
| 52 |
|
nmopre |
|
| 53 |
1 52
|
ax-mp |
|
| 54 |
53
|
a1i |
|
| 55 |
|
ledivmul2 |
|
| 56 |
13 54 16 31 55
|
syl112anc |
|
| 57 |
51 56
|
mpbid |
|
| 58 |
|
0le0 |
|
| 59 |
8
|
lnop0i |
|
| 60 |
59
|
fveq2i |
|
| 61 |
|
norm0 |
|
| 62 |
60 61
|
eqtri |
|
| 63 |
61
|
oveq2i |
|
| 64 |
53
|
recni |
|
| 65 |
64
|
mul01i |
|
| 66 |
63 65
|
eqtri |
|
| 67 |
58 62 66
|
3brtr4i |
|
| 68 |
67
|
a1i |
|
| 69 |
6 57 68
|
pm2.61ne |
|