Metamath Proof Explorer


Theorem nmlnoubi

Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nmlnoubi.1 X = BaseSet U
nmlnoubi.z Z = 0 vec U
nmlnoubi.k K = norm CV U
nmlnoubi.m M = norm CV W
nmlnoubi.3 N = U normOp OLD W
nmlnoubi.7 L = U LnOp W
nmlnoubi.u U NrmCVec
nmlnoubi.w W NrmCVec
Assertion nmlnoubi T L A 0 A x X x Z M T x A K x N T A

Proof

Step Hyp Ref Expression
1 nmlnoubi.1 X = BaseSet U
2 nmlnoubi.z Z = 0 vec U
3 nmlnoubi.k K = norm CV U
4 nmlnoubi.m M = norm CV W
5 nmlnoubi.3 N = U normOp OLD W
6 nmlnoubi.7 L = U LnOp W
7 nmlnoubi.u U NrmCVec
8 nmlnoubi.w W NrmCVec
9 2fveq3 x = Z M T x = M T Z
10 fveq2 x = Z K x = K Z
11 10 oveq2d x = Z A K x = A K Z
12 9 11 breq12d x = Z M T x A K x M T Z A K Z
13 id x Z M T x A K x x Z M T x A K x
14 13 imp x Z M T x A K x x Z M T x A K x
15 14 adantll T L A 0 A x Z M T x A K x x Z M T x A K x
16 0le0 0 0
17 eqid BaseSet W = BaseSet W
18 eqid 0 vec W = 0 vec W
19 1 17 2 18 6 lno0 U NrmCVec W NrmCVec T L T Z = 0 vec W
20 7 8 19 mp3an12 T L T Z = 0 vec W
21 20 fveq2d T L M T Z = M 0 vec W
22 18 4 nvz0 W NrmCVec M 0 vec W = 0
23 8 22 ax-mp M 0 vec W = 0
24 21 23 eqtrdi T L M T Z = 0
25 24 adantr T L A 0 A M T Z = 0
26 2 3 nvz0 U NrmCVec K Z = 0
27 7 26 ax-mp K Z = 0
28 27 oveq2i A K Z = A 0
29 recn A A
30 29 mul01d A A 0 = 0
31 28 30 eqtrid A A K Z = 0
32 31 ad2antrl T L A 0 A A K Z = 0
33 25 32 breq12d T L A 0 A M T Z A K Z 0 0
34 16 33 mpbiri T L A 0 A M T Z A K Z
35 34 adantr T L A 0 A x Z M T x A K x M T Z A K Z
36 12 15 35 pm2.61ne T L A 0 A x Z M T x A K x M T x A K x
37 36 ex T L A 0 A x Z M T x A K x M T x A K x
38 37 ralimdv T L A 0 A x X x Z M T x A K x x X M T x A K x
39 38 3impia T L A 0 A x X x Z M T x A K x x X M T x A K x
40 1 17 6 lnof U NrmCVec W NrmCVec T L T : X BaseSet W
41 7 8 40 mp3an12 T L T : X BaseSet W
42 1 17 3 4 5 7 8 nmoub2i T : X BaseSet W A 0 A x X M T x A K x N T A
43 41 42 syl3an1 T L A 0 A x X M T x A K x N T A
44 39 43 syld3an3 T L A 0 A x X x Z M T x A K x N T A