Metamath Proof Explorer


Theorem nmlnoubi

Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nmlnoubi.1 X=BaseSetU
nmlnoubi.z Z=0vecU
nmlnoubi.k K=normCVU
nmlnoubi.m M=normCVW
nmlnoubi.3 N=UnormOpOLDW
nmlnoubi.7 L=ULnOpW
nmlnoubi.u UNrmCVec
nmlnoubi.w WNrmCVec
Assertion nmlnoubi TLA0AxXxZMTxAKxNTA

Proof

Step Hyp Ref Expression
1 nmlnoubi.1 X=BaseSetU
2 nmlnoubi.z Z=0vecU
3 nmlnoubi.k K=normCVU
4 nmlnoubi.m M=normCVW
5 nmlnoubi.3 N=UnormOpOLDW
6 nmlnoubi.7 L=ULnOpW
7 nmlnoubi.u UNrmCVec
8 nmlnoubi.w WNrmCVec
9 2fveq3 x=ZMTx=MTZ
10 fveq2 x=ZKx=KZ
11 10 oveq2d x=ZAKx=AKZ
12 9 11 breq12d x=ZMTxAKxMTZAKZ
13 id xZMTxAKxxZMTxAKx
14 13 imp xZMTxAKxxZMTxAKx
15 14 adantll TLA0AxZMTxAKxxZMTxAKx
16 0le0 00
17 eqid BaseSetW=BaseSetW
18 eqid 0vecW=0vecW
19 1 17 2 18 6 lno0 UNrmCVecWNrmCVecTLTZ=0vecW
20 7 8 19 mp3an12 TLTZ=0vecW
21 20 fveq2d TLMTZ=M0vecW
22 18 4 nvz0 WNrmCVecM0vecW=0
23 8 22 ax-mp M0vecW=0
24 21 23 eqtrdi TLMTZ=0
25 24 adantr TLA0AMTZ=0
26 2 3 nvz0 UNrmCVecKZ=0
27 7 26 ax-mp KZ=0
28 27 oveq2i AKZ=A0
29 recn AA
30 29 mul01d AA0=0
31 28 30 eqtrid AAKZ=0
32 31 ad2antrl TLA0AAKZ=0
33 25 32 breq12d TLA0AMTZAKZ00
34 16 33 mpbiri TLA0AMTZAKZ
35 34 adantr TLA0AxZMTxAKxMTZAKZ
36 12 15 35 pm2.61ne TLA0AxZMTxAKxMTxAKx
37 36 ex TLA0AxZMTxAKxMTxAKx
38 37 ralimdv TLA0AxXxZMTxAKxxXMTxAKx
39 38 3impia TLA0AxXxZMTxAKxxXMTxAKx
40 1 17 6 lnof UNrmCVecWNrmCVecTLT:XBaseSetW
41 7 8 40 mp3an12 TLT:XBaseSetW
42 1 17 3 4 5 7 8 nmoub2i T:XBaseSetWA0AxXMTxAKxNTA
43 41 42 syl3an1 TLA0AxXMTxAKxNTA
44 39 43 syld3an3 TLA0AxXxZMTxAKxNTA