Metamath Proof Explorer


Theorem nmofval

Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Revised by AV, 26-Sep-2020)

Ref Expression
Hypotheses nmofval.1 N=SnormOpT
nmofval.2 V=BaseS
nmofval.3 L=normS
nmofval.4 M=normT
Assertion nmofval SNrmGrpTNrmGrpN=fSGrpHomTsupr0+∞|xVMfxrLx*<

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 nmofval.2 V=BaseS
3 nmofval.3 L=normS
4 nmofval.4 M=normT
5 oveq12 s=St=TsGrpHomt=SGrpHomT
6 simpl s=St=Ts=S
7 6 fveq2d s=St=TBases=BaseS
8 7 2 eqtr4di s=St=TBases=V
9 simpr s=St=Tt=T
10 9 fveq2d s=St=Tnormt=normT
11 10 4 eqtr4di s=St=Tnormt=M
12 11 fveq1d s=St=Tnormtfx=Mfx
13 6 fveq2d s=St=Tnorms=normS
14 13 3 eqtr4di s=St=Tnorms=L
15 14 fveq1d s=St=Tnormsx=Lx
16 15 oveq2d s=St=Trnormsx=rLx
17 12 16 breq12d s=St=TnormtfxrnormsxMfxrLx
18 8 17 raleqbidv s=St=TxBasesnormtfxrnormsxxVMfxrLx
19 18 rabbidv s=St=Tr0+∞|xBasesnormtfxrnormsx=r0+∞|xVMfxrLx
20 19 infeq1d s=St=Tsupr0+∞|xBasesnormtfxrnormsx*<=supr0+∞|xVMfxrLx*<
21 5 20 mpteq12dv s=St=TfsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<=fSGrpHomTsupr0+∞|xVMfxrLx*<
22 df-nmo normOp=sNrmGrp,tNrmGrpfsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<
23 eqid fSGrpHomTsupr0+∞|xVMfxrLx*<=fSGrpHomTsupr0+∞|xVMfxrLx*<
24 ssrab2 r0+∞|xVMfxrLx0+∞
25 icossxr 0+∞*
26 24 25 sstri r0+∞|xVMfxrLx*
27 infxrcl r0+∞|xVMfxrLx*supr0+∞|xVMfxrLx*<*
28 26 27 mp1i fSGrpHomTsupr0+∞|xVMfxrLx*<*
29 23 28 fmpti fSGrpHomTsupr0+∞|xVMfxrLx*<:SGrpHomT*
30 ovex SGrpHomTV
31 xrex *V
32 fex2 fSGrpHomTsupr0+∞|xVMfxrLx*<:SGrpHomT*SGrpHomTV*VfSGrpHomTsupr0+∞|xVMfxrLx*<V
33 29 30 31 32 mp3an fSGrpHomTsupr0+∞|xVMfxrLx*<V
34 21 22 33 ovmpoa SNrmGrpTNrmGrpSnormOpT=fSGrpHomTsupr0+∞|xVMfxrLx*<
35 1 34 eqtrid SNrmGrpTNrmGrpN=fSGrpHomTsupr0+∞|xVMfxrLx*<