Metamath Proof Explorer


Theorem nmoid

Description: The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nmoid.1 N=SnormOpS
nmoid.2 V=BaseS
nmoid.3 0˙=0S
Assertion nmoid SNrmGrp0˙VNIV=1

Proof

Step Hyp Ref Expression
1 nmoid.1 N=SnormOpS
2 nmoid.2 V=BaseS
3 nmoid.3 0˙=0S
4 eqid normS=normS
5 simpl SNrmGrp0˙VSNrmGrp
6 ngpgrp SNrmGrpSGrp
7 6 adantr SNrmGrp0˙VSGrp
8 2 idghm SGrpIVSGrpHomS
9 7 8 syl SNrmGrp0˙VIVSGrpHomS
10 1red SNrmGrp0˙V1
11 0le1 01
12 11 a1i SNrmGrp0˙V01
13 2 4 nmcl SNrmGrpxVnormSx
14 13 ad2ant2r SNrmGrp0˙VxVx0˙normSx
15 14 leidd SNrmGrp0˙VxVx0˙normSxnormSx
16 fvresi xVIVx=x
17 16 ad2antrl SNrmGrp0˙VxVx0˙IVx=x
18 17 fveq2d SNrmGrp0˙VxVx0˙normSIVx=normSx
19 14 recnd SNrmGrp0˙VxVx0˙normSx
20 19 mullidd SNrmGrp0˙VxVx0˙1normSx=normSx
21 15 18 20 3brtr4d SNrmGrp0˙VxVx0˙normSIVx1normSx
22 1 2 4 4 3 5 5 9 10 12 21 nmolb2d SNrmGrp0˙VNIV1
23 pssnel 0˙VxxV¬x0˙
24 23 adantl SNrmGrp0˙VxxV¬x0˙
25 velsn x0˙x=0˙
26 25 biimpri x=0˙x0˙
27 26 necon3bi ¬x0˙x0˙
28 20 18 eqtr4d SNrmGrp0˙VxVx0˙1normSx=normSIVx
29 1 nmocl SNrmGrpSNrmGrpIVSGrpHomSNIV*
30 5 5 9 29 syl3anc SNrmGrp0˙VNIV*
31 1 nmoge0 SNrmGrpSNrmGrpIVSGrpHomS0NIV
32 5 5 9 31 syl3anc SNrmGrp0˙V0NIV
33 xrrege0 NIV*10NIVNIV1NIV
34 30 10 32 22 33 syl22anc SNrmGrp0˙VNIV
35 1 isnghm2 SNrmGrpSNrmGrpIVSGrpHomSIVSNGHomSNIV
36 5 5 9 35 syl3anc SNrmGrp0˙VIVSNGHomSNIV
37 34 36 mpbird SNrmGrp0˙VIVSNGHomS
38 simprl SNrmGrp0˙VxVx0˙xV
39 1 2 4 4 nmoi IVSNGHomSxVnormSIVxNIVnormSx
40 37 38 39 syl2an2r SNrmGrp0˙VxVx0˙normSIVxNIVnormSx
41 28 40 eqbrtrd SNrmGrp0˙VxVx0˙1normSxNIVnormSx
42 1red SNrmGrp0˙VxVx0˙1
43 34 adantr SNrmGrp0˙VxVx0˙NIV
44 2 4 3 nmrpcl SNrmGrpxVx0˙normSx+
45 44 3expb SNrmGrpxVx0˙normSx+
46 45 adantlr SNrmGrp0˙VxVx0˙normSx+
47 42 43 46 lemul1d SNrmGrp0˙VxVx0˙1NIV1normSxNIVnormSx
48 41 47 mpbird SNrmGrp0˙VxVx0˙1NIV
49 27 48 sylanr2 SNrmGrp0˙VxV¬x0˙1NIV
50 24 49 exlimddv SNrmGrp0˙V1NIV
51 1xr 1*
52 xrletri3 NIV*1*NIV=1NIV11NIV
53 30 51 52 sylancl SNrmGrp0˙VNIV=1NIV11NIV
54 22 50 53 mpbir2and SNrmGrp0˙VNIV=1