Metamath Proof Explorer


Theorem nmoi

Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses nmofval.1 N=SnormOpT
nmoi.2 V=BaseS
nmoi.3 L=normS
nmoi.4 M=normT
Assertion nmoi FSNGHomTXVMFXNFLX

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 nmoi.2 V=BaseS
3 nmoi.3 L=normS
4 nmoi.4 M=normT
5 2fveq3 X=0SMFX=MF0S
6 fveq2 X=0SLX=L0S
7 6 oveq2d X=0SNFLX=NFL0S
8 5 7 breq12d X=0SMFXNFLXMF0SNFL0S
9 2fveq3 x=XMFx=MFX
10 fveq2 x=XLx=LX
11 10 oveq2d x=XrLx=rLX
12 9 11 breq12d x=XMFxrLxMFXrLX
13 12 rspcv XVxVMFxrLxMFXrLX
14 13 ad3antlr FSNGHomTXVX0Sr0+∞xVMFxrLxMFXrLX
15 1 isnghm FSNGHomTSNrmGrpTNrmGrpFSGrpHomTNF
16 15 simplbi FSNGHomTSNrmGrpTNrmGrp
17 16 adantr FSNGHomTXVSNrmGrpTNrmGrp
18 17 simprd FSNGHomTXVTNrmGrp
19 15 simprbi FSNGHomTFSGrpHomTNF
20 19 adantr FSNGHomTXVFSGrpHomTNF
21 20 simpld FSNGHomTXVFSGrpHomT
22 eqid BaseT=BaseT
23 2 22 ghmf FSGrpHomTF:VBaseT
24 21 23 syl FSNGHomTXVF:VBaseT
25 ffvelcdm F:VBaseTXVFXBaseT
26 24 25 sylancom FSNGHomTXVFXBaseT
27 22 4 nmcl TNrmGrpFXBaseTMFX
28 18 26 27 syl2anc FSNGHomTXVMFX
29 28 adantr FSNGHomTXVX0SMFX
30 29 adantr FSNGHomTXVX0Sr0+∞MFX
31 elrege0 r0+∞r0r
32 31 simplbi r0+∞r
33 32 adantl FSNGHomTXVX0Sr0+∞r
34 17 simpld FSNGHomTXVSNrmGrp
35 simpr FSNGHomTXVXV
36 34 35 jca FSNGHomTXVSNrmGrpXV
37 eqid 0S=0S
38 2 3 37 nmrpcl SNrmGrpXVX0SLX+
39 38 3expa SNrmGrpXVX0SLX+
40 36 39 sylan FSNGHomTXVX0SLX+
41 40 rpregt0d FSNGHomTXVX0SLX0<LX
42 41 adantr FSNGHomTXVX0Sr0+∞LX0<LX
43 ledivmul2 MFXrLX0<LXMFXLXrMFXrLX
44 30 33 42 43 syl3anc FSNGHomTXVX0Sr0+∞MFXLXrMFXrLX
45 14 44 sylibrd FSNGHomTXVX0Sr0+∞xVMFxrLxMFXLXr
46 45 ralrimiva FSNGHomTXVX0Sr0+∞xVMFxrLxMFXLXr
47 34 adantr FSNGHomTXVX0SSNrmGrp
48 18 adantr FSNGHomTXVX0STNrmGrp
49 21 adantr FSNGHomTXVX0SFSGrpHomT
50 29 40 rerpdivcld FSNGHomTXVX0SMFXLX
51 50 rexrd FSNGHomTXVX0SMFXLX*
52 1 2 3 4 nmogelb SNrmGrpTNrmGrpFSGrpHomTMFXLX*MFXLXNFr0+∞xVMFxrLxMFXLXr
53 47 48 49 51 52 syl31anc FSNGHomTXVX0SMFXLXNFr0+∞xVMFxrLxMFXLXr
54 46 53 mpbird FSNGHomTXVX0SMFXLXNF
55 20 simprd FSNGHomTXVNF
56 55 adantr FSNGHomTXVX0SNF
57 29 56 40 ledivmul2d FSNGHomTXVX0SMFXLXNFMFXNFLX
58 54 57 mpbid FSNGHomTXVX0SMFXNFLX
59 eqid 0T=0T
60 37 59 ghmid FSGrpHomTF0S=0T
61 21 60 syl FSNGHomTXVF0S=0T
62 61 fveq2d FSNGHomTXVMF0S=M0T
63 4 59 nm0 TNrmGrpM0T=0
64 18 63 syl FSNGHomTXVM0T=0
65 62 64 eqtrd FSNGHomTXVMF0S=0
66 3 37 nm0 SNrmGrpL0S=0
67 34 66 syl FSNGHomTXVL0S=0
68 0re 0
69 67 68 eqeltrdi FSNGHomTXVL0S
70 1 nmoge0 SNrmGrpTNrmGrpFSGrpHomT0NF
71 34 18 21 70 syl3anc FSNGHomTXV0NF
72 0le0 00
73 72 67 breqtrrid FSNGHomTXV0L0S
74 55 69 71 73 mulge0d FSNGHomTXV0NFL0S
75 65 74 eqbrtrd FSNGHomTXVMF0SNFL0S
76 8 58 75 pm2.61ne FSNGHomTXVMFXNFLX