Metamath Proof Explorer


Theorem nmorepnf

Description: The norm of an operator is either real or plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1 X=BaseSetU
nmoxr.2 Y=BaseSetW
nmoxr.3 N=UnormOpOLDW
Assertion nmorepnf UNrmCVecWNrmCVecT:XYNTNT+∞

Proof

Step Hyp Ref Expression
1 nmoxr.1 X=BaseSetU
2 nmoxr.2 Y=BaseSetW
3 nmoxr.3 N=UnormOpOLDW
4 eqid normCVW=normCVW
5 2 4 nmosetre WNrmCVecT:XYx|zXnormCVUz1x=normCVWTz
6 eqid 0vecU=0vecU
7 eqid normCVU=normCVU
8 1 6 7 nmosetn0 UNrmCVecnormCVWT0vecUx|zXnormCVUz1x=normCVWTz
9 8 ne0d UNrmCVecx|zXnormCVUz1x=normCVWTz
10 supxrre2 x|zXnormCVUz1x=normCVWTzx|zXnormCVUz1x=normCVWTzsupx|zXnormCVUz1x=normCVWTz*<supx|zXnormCVUz1x=normCVWTz*<+∞
11 5 9 10 syl2anr UNrmCVecWNrmCVecT:XYsupx|zXnormCVUz1x=normCVWTz*<supx|zXnormCVUz1x=normCVWTz*<+∞
12 11 3impb UNrmCVecWNrmCVecT:XYsupx|zXnormCVUz1x=normCVWTz*<supx|zXnormCVUz1x=normCVWTz*<+∞
13 1 2 7 4 3 nmooval UNrmCVecWNrmCVecT:XYNT=supx|zXnormCVUz1x=normCVWTz*<
14 13 eleq1d UNrmCVecWNrmCVecT:XYNTsupx|zXnormCVUz1x=normCVWTz*<
15 13 neeq1d UNrmCVecWNrmCVecT:XYNT+∞supx|zXnormCVUz1x=normCVWTz*<+∞
16 12 14 15 3bitr4d UNrmCVecWNrmCVecT:XYNTNT+∞