Metamath Proof Explorer


Theorem nndivsub

Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008)

Ref Expression
Assertion nndivsub ABCACA<BBCBAC

Proof

Step Hyp Ref Expression
1 nnre AA
2 nnre BB
3 nnre CC
4 nngt0 C0<C
5 3 4 jca CC0<C
6 ltdiv1 ABC0<CA<BAC<BC
7 1 2 5 6 syl3an ABCA<BAC<BC
8 nnsub ACBCAC<BCBCAC
9 7 8 sylan9bb ABCACBCA<BBCAC
10 9 biimpd ABCACBCA<BBCAC
11 10 exp32 ABCACBCA<BBCAC
12 11 com34 ABCACA<BBCBCAC
13 12 imp32 ABCACA<BBCBCAC
14 nnaddcl BCACACBC-AC+AC
15 14 expcom ACBCACBC-AC+AC
16 nnsscn
17 nnne0 CC0
18 divcl ACC0AC
19 16 17 18 nnssi2 ACAC
20 divcl BCC0BC
21 16 17 20 nnssi2 BCBC
22 19 21 anim12i ACBCACBC
23 22 3impdir ABCACBC
24 npcan BCACBC-AC+AC=BC
25 24 ancoms ACBCBC-AC+AC=BC
26 23 25 syl ABCBC-AC+AC=BC
27 26 eleq1d ABCBC-AC+ACBC
28 27 biimpd ABCBC-AC+ACBC
29 15 28 sylan9r ABCACBCACBC
30 29 adantrr ABCACA<BBCACBC
31 13 30 impbid ABCACA<BBCBCAC
32 nncn BB
33 32 3ad2ant2 ABCB
34 nncn AA
35 34 3ad2ant1 ABCA
36 nncn CC
37 36 17 jca CCC0
38 37 3ad2ant3 ABCCC0
39 divsubdir BACC0BAC=BCAC
40 33 35 38 39 syl3anc ABCBAC=BCAC
41 40 eleq1d ABCBACBCAC
42 41 adantr ABCACA<BBACBCAC
43 31 42 bitr4d ABCACA<BBCBAC