Metamath Proof Explorer


Theorem nndivsub

Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008)

Ref Expression
Assertion nndivsub A B C A C A < B B C B A C

Proof

Step Hyp Ref Expression
1 nnre A A
2 nnre B B
3 nnre C C
4 nngt0 C 0 < C
5 3 4 jca C C 0 < C
6 ltdiv1 A B C 0 < C A < B A C < B C
7 1 2 5 6 syl3an A B C A < B A C < B C
8 nnsub A C B C A C < B C B C A C
9 7 8 sylan9bb A B C A C B C A < B B C A C
10 9 biimpd A B C A C B C A < B B C A C
11 10 exp32 A B C A C B C A < B B C A C
12 11 com34 A B C A C A < B B C B C A C
13 12 imp32 A B C A C A < B B C B C A C
14 nnaddcl B C A C A C B C - A C + A C
15 14 expcom A C B C A C B C - A C + A C
16 nnsscn
17 nnne0 C C 0
18 divcl A C C 0 A C
19 16 17 18 nnssi2 A C A C
20 divcl B C C 0 B C
21 16 17 20 nnssi2 B C B C
22 19 21 anim12i A C B C A C B C
23 22 3impdir A B C A C B C
24 npcan B C A C B C - A C + A C = B C
25 24 ancoms A C B C B C - A C + A C = B C
26 23 25 syl A B C B C - A C + A C = B C
27 26 eleq1d A B C B C - A C + A C B C
28 27 biimpd A B C B C - A C + A C B C
29 15 28 sylan9r A B C A C B C A C B C
30 29 adantrr A B C A C A < B B C A C B C
31 13 30 impbid A B C A C A < B B C B C A C
32 nncn B B
33 32 3ad2ant2 A B C B
34 nncn A A
35 34 3ad2ant1 A B C A
36 nncn C C
37 36 17 jca C C C 0
38 37 3ad2ant3 A B C C C 0
39 divsubdir B A C C 0 B A C = B C A C
40 33 35 38 39 syl3anc A B C B A C = B C A C
41 40 eleq1d A B C B A C B C A C
42 41 adantr A B C A C A < B B A C B C A C
43 31 42 bitr4d A B C A C A < B B C B A C