Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | nndivsub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre | |
|
2 | nnre | |
|
3 | nnre | |
|
4 | nngt0 | |
|
5 | 3 4 | jca | |
6 | ltdiv1 | |
|
7 | 1 2 5 6 | syl3an | |
8 | nnsub | |
|
9 | 7 8 | sylan9bb | |
10 | 9 | biimpd | |
11 | 10 | exp32 | |
12 | 11 | com34 | |
13 | 12 | imp32 | |
14 | nnaddcl | |
|
15 | 14 | expcom | |
16 | nnsscn | |
|
17 | nnne0 | |
|
18 | divcl | |
|
19 | 16 17 18 | nnssi2 | |
20 | divcl | |
|
21 | 16 17 20 | nnssi2 | |
22 | 19 21 | anim12i | |
23 | 22 | 3impdir | |
24 | npcan | |
|
25 | 24 | ancoms | |
26 | 23 25 | syl | |
27 | 26 | eleq1d | |
28 | 27 | biimpd | |
29 | 15 28 | sylan9r | |
30 | 29 | adantrr | |
31 | 13 30 | impbid | |
32 | nncn | |
|
33 | 32 | 3ad2ant2 | |
34 | nncn | |
|
35 | 34 | 3ad2ant1 | |
36 | nncn | |
|
37 | 36 17 | jca | |
38 | 37 | 3ad2ant3 | |
39 | divsubdir | |
|
40 | 33 35 38 39 | syl3anc | |
41 | 40 | eleq1d | |
42 | 41 | adantr | |
43 | 31 42 | bitr4d | |