| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnmordi |  | 
						
							| 2 | 1 | ex |  | 
						
							| 3 | 2 | impcomd |  | 
						
							| 4 | 3 | 3adant1 |  | 
						
							| 5 |  | ne0i |  | 
						
							| 6 |  | nnm0r |  | 
						
							| 7 |  | oveq1 |  | 
						
							| 8 | 7 | eqeq1d |  | 
						
							| 9 | 6 8 | syl5ibrcom |  | 
						
							| 10 | 9 | necon3d |  | 
						
							| 11 | 5 10 | syl5 |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | nnord |  | 
						
							| 14 |  | ord0eln0 |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 12 16 | sylibrd |  | 
						
							| 18 | 17 | 3adant1 |  | 
						
							| 19 |  | oveq2 |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 |  | nnmordi |  | 
						
							| 22 | 21 | 3adantl2 |  | 
						
							| 23 | 20 22 | orim12d |  | 
						
							| 24 | 23 | con3d |  | 
						
							| 25 |  | simpl3 |  | 
						
							| 26 |  | simpl1 |  | 
						
							| 27 |  | nnmcl |  | 
						
							| 28 | 25 26 27 | syl2anc |  | 
						
							| 29 |  | simpl2 |  | 
						
							| 30 |  | nnmcl |  | 
						
							| 31 | 25 29 30 | syl2anc |  | 
						
							| 32 |  | nnord |  | 
						
							| 33 |  | nnord |  | 
						
							| 34 |  | ordtri2 |  | 
						
							| 35 | 32 33 34 | syl2an |  | 
						
							| 36 | 28 31 35 | syl2anc |  | 
						
							| 37 |  | nnord |  | 
						
							| 38 |  | nnord |  | 
						
							| 39 |  | ordtri2 |  | 
						
							| 40 | 37 38 39 | syl2an |  | 
						
							| 41 | 26 29 40 | syl2anc |  | 
						
							| 42 | 24 36 41 | 3imtr4d |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 43 | com23 |  | 
						
							| 45 | 18 44 | mpdd |  | 
						
							| 46 | 45 18 | jcad |  | 
						
							| 47 | 4 46 | impbid |  |