Metamath Proof Explorer


Theorem nnubfi

Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion nnubfi ABxA|x<BFin

Proof

Step Hyp Ref Expression
1 fzfi 0BFin
2 ssel2 AxAx
3 nnnn0 xx0
4 2 3 syl AxAx0
5 4 adantlr ABxAx0
6 5 adantr ABxAx<Bx0
7 nnnn0 BB0
8 7 ad3antlr ABxAx<BB0
9 nnre xx
10 2 9 syl AxAx
11 10 adantlr ABxAx
12 nnre BB
13 12 ad2antlr ABxAB
14 ltle xBx<BxB
15 11 13 14 syl2anc ABxAx<BxB
16 15 imp ABxAx<BxB
17 elfz2nn0 x0Bx0B0xB
18 6 8 16 17 syl3anbrc ABxAx<Bx0B
19 18 ex ABxAx<Bx0B
20 19 ralrimiva ABxAx<Bx0B
21 rabss xA|x<B0BxAx<Bx0B
22 20 21 sylibr ABxA|x<B0B
23 ssfi 0BFinxA|x<B0BxA|x<BFin
24 1 22 23 sylancr ABxA|x<BFin