Description: Lemma for numclwwlk2lem1 . (Contributed by Alexander van der Vekens, 3-Oct-2018) (Revised by AV, 27-May-2021) (Revised by AV, 15-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | numclwwlk2lem1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlknbp1 | |
|
2 | simpl2 | |
|
3 | s1cl | |
|
4 | 3 | ad2antrl | |
5 | nn0p1gt0 | |
|
6 | 5 | 3ad2ant1 | |
7 | 6 | adantr | |
8 | breq2 | |
|
9 | 8 | 3ad2ant3 | |
10 | 9 | adantr | |
11 | 7 10 | mpbird | |
12 | ccatfv0 | |
|
13 | 2 4 11 12 | syl3anc | |
14 | oveq1 | |
|
15 | 14 | 3ad2ant3 | |
16 | nn0cn | |
|
17 | pncan1 | |
|
18 | 16 17 | syl | |
19 | 18 | 3ad2ant1 | |
20 | 15 19 | eqtr2d | |
21 | 20 | adantr | |
22 | 21 | fveq2d | |
23 | simpl2 | |
|
24 | 3 | adantl | |
25 | 6 | adantr | |
26 | 9 | adantr | |
27 | 25 26 | mpbird | |
28 | hashneq0 | |
|
29 | 28 | bicomd | |
30 | 29 | 3ad2ant2 | |
31 | 30 | adantr | |
32 | 27 31 | mpbird | |
33 | ccatval1lsw | |
|
34 | 23 24 32 33 | syl3anc | |
35 | 22 34 | eqtr2d | |
36 | 35 | neeq1d | |
37 | 36 | biimpd | |
38 | 37 | impr | |
39 | 13 38 | jca | |
40 | 39 | exp32 | |
41 | 1 40 | syl | |
42 | 41 | 3imp21 | |