Metamath Proof Explorer


Theorem numclwwlk2lem1lem

Description: Lemma for numclwwlk2lem1 . (Contributed by Alexander van der Vekens, 3-Oct-2018) (Revised by AV, 27-May-2021) (Revised by AV, 15-Mar-2022)

Ref Expression
Assertion numclwwlk2lem1lem XVtxGWNWWalksNGlastSWW0W++⟨“X”⟩0=W0W++⟨“X”⟩NW0

Proof

Step Hyp Ref Expression
1 wwlknbp1 WNWWalksNGN0WWordVtxGW=N+1
2 simpl2 N0WWordVtxGW=N+1XVtxGlastSWW0WWordVtxG
3 s1cl XVtxG⟨“X”⟩WordVtxG
4 3 ad2antrl N0WWordVtxGW=N+1XVtxGlastSWW0⟨“X”⟩WordVtxG
5 nn0p1gt0 N00<N+1
6 5 3ad2ant1 N0WWordVtxGW=N+10<N+1
7 6 adantr N0WWordVtxGW=N+1XVtxGlastSWW00<N+1
8 breq2 W=N+10<W0<N+1
9 8 3ad2ant3 N0WWordVtxGW=N+10<W0<N+1
10 9 adantr N0WWordVtxGW=N+1XVtxGlastSWW00<W0<N+1
11 7 10 mpbird N0WWordVtxGW=N+1XVtxGlastSWW00<W
12 ccatfv0 WWordVtxG⟨“X”⟩WordVtxG0<WW++⟨“X”⟩0=W0
13 2 4 11 12 syl3anc N0WWordVtxGW=N+1XVtxGlastSWW0W++⟨“X”⟩0=W0
14 oveq1 W=N+1W1=N+1-1
15 14 3ad2ant3 N0WWordVtxGW=N+1W1=N+1-1
16 nn0cn N0N
17 pncan1 NN+1-1=N
18 16 17 syl N0N+1-1=N
19 18 3ad2ant1 N0WWordVtxGW=N+1N+1-1=N
20 15 19 eqtr2d N0WWordVtxGW=N+1N=W1
21 20 adantr N0WWordVtxGW=N+1XVtxGN=W1
22 21 fveq2d N0WWordVtxGW=N+1XVtxGW++⟨“X”⟩N=W++⟨“X”⟩W1
23 simpl2 N0WWordVtxGW=N+1XVtxGWWordVtxG
24 3 adantl N0WWordVtxGW=N+1XVtxG⟨“X”⟩WordVtxG
25 6 adantr N0WWordVtxGW=N+1XVtxG0<N+1
26 9 adantr N0WWordVtxGW=N+1XVtxG0<W0<N+1
27 25 26 mpbird N0WWordVtxGW=N+1XVtxG0<W
28 hashneq0 WWordVtxG0<WW
29 28 bicomd WWordVtxGW0<W
30 29 3ad2ant2 N0WWordVtxGW=N+1W0<W
31 30 adantr N0WWordVtxGW=N+1XVtxGW0<W
32 27 31 mpbird N0WWordVtxGW=N+1XVtxGW
33 ccatval1lsw WWordVtxG⟨“X”⟩WordVtxGWW++⟨“X”⟩W1=lastSW
34 23 24 32 33 syl3anc N0WWordVtxGW=N+1XVtxGW++⟨“X”⟩W1=lastSW
35 22 34 eqtr2d N0WWordVtxGW=N+1XVtxGlastSW=W++⟨“X”⟩N
36 35 neeq1d N0WWordVtxGW=N+1XVtxGlastSWW0W++⟨“X”⟩NW0
37 36 biimpd N0WWordVtxGW=N+1XVtxGlastSWW0W++⟨“X”⟩NW0
38 37 impr N0WWordVtxGW=N+1XVtxGlastSWW0W++⟨“X”⟩NW0
39 13 38 jca N0WWordVtxGW=N+1XVtxGlastSWW0W++⟨“X”⟩0=W0W++⟨“X”⟩NW0
40 39 exp32 N0WWordVtxGW=N+1XVtxGlastSWW0W++⟨“X”⟩0=W0W++⟨“X”⟩NW0
41 1 40 syl WNWWalksNGXVtxGlastSWW0W++⟨“X”⟩0=W0W++⟨“X”⟩NW0
42 41 3imp21 XVtxGWNWWalksNGlastSWW0W++⟨“X”⟩0=W0W++⟨“X”⟩NW0