| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk3lem2.c |  | 
						
							| 2 |  | numclwwlk3lem2.h |  | 
						
							| 3 | 1 2 | numclwwlk3lem2lem |  | 
						
							| 4 | 3 | adantll |  | 
						
							| 5 | 4 | fveq2d |  | 
						
							| 6 | 2 | numclwwlkovh0 |  | 
						
							| 7 | 6 | adantll |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 8 | fusgrvtxfi |  | 
						
							| 10 | 9 | ad2antrr |  | 
						
							| 11 | 8 | clwwlknonfin |  | 
						
							| 12 |  | rabfi |  | 
						
							| 13 | 10 11 12 | 3syl |  | 
						
							| 14 | 7 13 | eqeltrd |  | 
						
							| 15 | 1 | 2clwwlk |  | 
						
							| 16 | 15 | adantll |  | 
						
							| 17 |  | rabfi |  | 
						
							| 18 | 10 11 17 | 3syl |  | 
						
							| 19 | 16 18 | eqeltrd |  | 
						
							| 20 | 7 16 | ineq12d |  | 
						
							| 21 |  | inrab |  | 
						
							| 22 |  | exmid |  | 
						
							| 23 |  | ianor |  | 
						
							| 24 |  | nne |  | 
						
							| 25 | 24 | orbi1i |  | 
						
							| 26 | 23 25 | bitri |  | 
						
							| 27 | 22 26 | mpbir |  | 
						
							| 28 | 27 | rgenw |  | 
						
							| 29 |  | rabeq0 |  | 
						
							| 30 | 28 29 | mpbir |  | 
						
							| 31 | 21 30 | eqtri |  | 
						
							| 32 | 20 31 | eqtrdi |  | 
						
							| 33 |  | hashun |  | 
						
							| 34 | 14 19 32 33 | syl3anc |  | 
						
							| 35 | 5 34 | eqtrd |  |