Description: Lemma 1 for numclwwlk3 : The number of closed vertices of a fixed length N on a fixed vertex V is the sum of the number of closed walks of length N at V with the last but one vertex being V and the set of closed walks of length N at V with the last but one vertex not being V . (Contributed by Alexander van der Vekens, 6-Oct-2018) (Revised by AV, 1-Jun-2021) (Revised by AV, 1-May-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | numclwwlk3lem2.c | |
|
numclwwlk3lem2.h | |
||
Assertion | numclwwlk3lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk3lem2.c | |
|
2 | numclwwlk3lem2.h | |
|
3 | 1 2 | numclwwlk3lem2lem | |
4 | 3 | adantll | |
5 | 4 | fveq2d | |
6 | 2 | numclwwlkovh0 | |
7 | 6 | adantll | |
8 | eqid | |
|
9 | 8 | fusgrvtxfi | |
10 | 9 | ad2antrr | |
11 | 8 | clwwlknonfin | |
12 | rabfi | |
|
13 | 10 11 12 | 3syl | |
14 | 7 13 | eqeltrd | |
15 | 1 | 2clwwlk | |
16 | 15 | adantll | |
17 | rabfi | |
|
18 | 10 11 17 | 3syl | |
19 | 16 18 | eqeltrd | |
20 | 7 16 | ineq12d | |
21 | inrab | |
|
22 | exmid | |
|
23 | ianor | |
|
24 | nne | |
|
25 | 24 | orbi1i | |
26 | 23 25 | bitri | |
27 | 22 26 | mpbir | |
28 | 27 | rgenw | |
29 | rabeq0 | |
|
30 | 28 29 | mpbir | |
31 | 21 30 | eqtri | |
32 | 20 31 | eqtrdi | |
33 | hashun | |
|
34 | 14 19 32 33 | syl3anc | |
35 | 5 34 | eqtrd | |