Metamath Proof Explorer


Theorem numclwwlk3lem2

Description: Lemma 1 for numclwwlk3 : The number of closed vertices of a fixed length N on a fixed vertex V is the sum of the number of closed walks of length N at V with the last but one vertex being V and the set of closed walks of length N at V with the last but one vertex not being V . (Contributed by Alexander van der Vekens, 6-Oct-2018) (Revised by AV, 1-Jun-2021) (Revised by AV, 1-May-2022)

Ref Expression
Hypotheses numclwwlk3lem2.c C=vV,n2wvClWWalksNOnGn|wn2=v
numclwwlk3lem2.h H=vV,n2wvClWWalksNOnGn|wn2v
Assertion numclwwlk3lem2 GFinUSGraphXVN2XClWWalksNOnGN=XHN+XCN

Proof

Step Hyp Ref Expression
1 numclwwlk3lem2.c C=vV,n2wvClWWalksNOnGn|wn2=v
2 numclwwlk3lem2.h H=vV,n2wvClWWalksNOnGn|wn2v
3 1 2 numclwwlk3lem2lem XVN2XClWWalksNOnGN=XHNXCN
4 3 adantll GFinUSGraphXVN2XClWWalksNOnGN=XHNXCN
5 4 fveq2d GFinUSGraphXVN2XClWWalksNOnGN=XHNXCN
6 2 numclwwlkovh0 XVN2XHN=wXClWWalksNOnGN|wN2X
7 6 adantll GFinUSGraphXVN2XHN=wXClWWalksNOnGN|wN2X
8 eqid VtxG=VtxG
9 8 fusgrvtxfi GFinUSGraphVtxGFin
10 9 ad2antrr GFinUSGraphXVN2VtxGFin
11 8 clwwlknonfin VtxGFinXClWWalksNOnGNFin
12 rabfi XClWWalksNOnGNFinwXClWWalksNOnGN|wN2XFin
13 10 11 12 3syl GFinUSGraphXVN2wXClWWalksNOnGN|wN2XFin
14 7 13 eqeltrd GFinUSGraphXVN2XHNFin
15 1 2clwwlk XVN2XCN=wXClWWalksNOnGN|wN2=X
16 15 adantll GFinUSGraphXVN2XCN=wXClWWalksNOnGN|wN2=X
17 rabfi XClWWalksNOnGNFinwXClWWalksNOnGN|wN2=XFin
18 10 11 17 3syl GFinUSGraphXVN2wXClWWalksNOnGN|wN2=XFin
19 16 18 eqeltrd GFinUSGraphXVN2XCNFin
20 7 16 ineq12d GFinUSGraphXVN2XHNXCN=wXClWWalksNOnGN|wN2XwXClWWalksNOnGN|wN2=X
21 inrab wXClWWalksNOnGN|wN2XwXClWWalksNOnGN|wN2=X=wXClWWalksNOnGN|wN2XwN2=X
22 exmid wN2=X¬wN2=X
23 ianor ¬wN2XwN2=X¬wN2X¬wN2=X
24 nne ¬wN2XwN2=X
25 24 orbi1i ¬wN2X¬wN2=XwN2=X¬wN2=X
26 23 25 bitri ¬wN2XwN2=XwN2=X¬wN2=X
27 22 26 mpbir ¬wN2XwN2=X
28 27 rgenw wXClWWalksNOnGN¬wN2XwN2=X
29 rabeq0 wXClWWalksNOnGN|wN2XwN2=X=wXClWWalksNOnGN¬wN2XwN2=X
30 28 29 mpbir wXClWWalksNOnGN|wN2XwN2=X=
31 21 30 eqtri wXClWWalksNOnGN|wN2XwXClWWalksNOnGN|wN2=X=
32 20 31 eqtrdi GFinUSGraphXVN2XHNXCN=
33 hashun XHNFinXCNFinXHNXCN=XHNXCN=XHN+XCN
34 14 19 32 33 syl3anc GFinUSGraphXVN2XHNXCN=XHN+XCN
35 5 34 eqtrd GFinUSGraphXVN2XClWWalksNOnGN=XHN+XCN