Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nzprmdif.m | |
|
nzprmdif.n | |
||
nzprmdif.ne | |
||
Assertion | nzprmdif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzprmdif.m | |
|
2 | nzprmdif.n | |
|
3 | nzprmdif.ne | |
|
4 | difin | |
|
5 | prmz | |
|
6 | 1 5 | syl | |
7 | prmz | |
|
8 | 2 7 | syl | |
9 | 6 8 | nzin | |
10 | 9 | difeq2d | |
11 | 4 10 | eqtr3id | |
12 | lcmgcd | |
|
13 | 6 8 12 | syl2anc | |
14 | prmrp | |
|
15 | 1 2 14 | syl2anc | |
16 | 3 15 | mpbird | |
17 | 16 | oveq2d | |
18 | lcmcl | |
|
19 | 6 8 18 | syl2anc | |
20 | 19 | nn0cnd | |
21 | 20 | mulridd | |
22 | 17 21 | eqtrd | |
23 | 6 | zred | |
24 | 8 | zred | |
25 | 23 24 | remulcld | |
26 | prmnn | |
|
27 | 1 26 | syl | |
28 | 27 | nnnn0d | |
29 | 28 | nn0ge0d | |
30 | prmnn | |
|
31 | 2 30 | syl | |
32 | 31 | nnnn0d | |
33 | 32 | nn0ge0d | |
34 | 23 24 29 33 | mulge0d | |
35 | 25 34 | absidd | |
36 | 13 22 35 | 3eqtr3d | |
37 | 36 | sneqd | |
38 | 37 | imaeq2d | |
39 | 38 | difeq2d | |
40 | 11 39 | eqtrd | |