Metamath Proof Explorer


Theorem oaomoencom

Description: Ordinal addition, multiplication, and exponentiation do not generally commute. Theorem 4.1 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oaomoencom aOnbOn¬a+𝑜b=b+𝑜aaOnbOn¬a𝑜b=b𝑜aaOnbOn¬a𝑜b=b𝑜a

Proof

Step Hyp Ref Expression
1 oancom 1𝑜+𝑜ωω+𝑜1𝑜
2 1 neii ¬1𝑜+𝑜ω=ω+𝑜1𝑜
3 1on 1𝑜On
4 omelon ωOn
5 oveq2 b=ω1𝑜+𝑜b=1𝑜+𝑜ω
6 oveq1 b=ωb+𝑜1𝑜=ω+𝑜1𝑜
7 5 6 eqeq12d b=ω1𝑜+𝑜b=b+𝑜1𝑜1𝑜+𝑜ω=ω+𝑜1𝑜
8 7 notbid b=ω¬1𝑜+𝑜b=b+𝑜1𝑜¬1𝑜+𝑜ω=ω+𝑜1𝑜
9 8 rspcev ωOn¬1𝑜+𝑜ω=ω+𝑜1𝑜bOn¬1𝑜+𝑜b=b+𝑜1𝑜
10 4 9 mpan ¬1𝑜+𝑜ω=ω+𝑜1𝑜bOn¬1𝑜+𝑜b=b+𝑜1𝑜
11 oveq1 a=1𝑜a+𝑜b=1𝑜+𝑜b
12 oveq2 a=1𝑜b+𝑜a=b+𝑜1𝑜
13 11 12 eqeq12d a=1𝑜a+𝑜b=b+𝑜a1𝑜+𝑜b=b+𝑜1𝑜
14 13 notbid a=1𝑜¬a+𝑜b=b+𝑜a¬1𝑜+𝑜b=b+𝑜1𝑜
15 14 rexbidv a=1𝑜bOn¬a+𝑜b=b+𝑜abOn¬1𝑜+𝑜b=b+𝑜1𝑜
16 15 rspcev 1𝑜OnbOn¬1𝑜+𝑜b=b+𝑜1𝑜aOnbOn¬a+𝑜b=b+𝑜a
17 3 10 16 sylancr ¬1𝑜+𝑜ω=ω+𝑜1𝑜aOnbOn¬a+𝑜b=b+𝑜a
18 2 17 ax-mp aOnbOn¬a+𝑜b=b+𝑜a
19 4 4 pm3.2i ωOnωOn
20 peano1 ω
21 19 20 pm3.2i ωOnωOnω
22 oaord1 ωOnωOnωωω+𝑜ω
23 22 biimpa ωOnωOnωωω+𝑜ω
24 elneq ωω+𝑜ωωω+𝑜ω
25 21 23 24 mp2b ωω+𝑜ω
26 2omomeqom 2𝑜𝑜ω=ω
27 df-2o 2𝑜=suc1𝑜
28 27 oveq2i ω𝑜2𝑜=ω𝑜suc1𝑜
29 omsuc ωOn1𝑜Onω𝑜suc1𝑜=ω𝑜1𝑜+𝑜ω
30 4 3 29 mp2an ω𝑜suc1𝑜=ω𝑜1𝑜+𝑜ω
31 om1 ωOnω𝑜1𝑜=ω
32 4 31 ax-mp ω𝑜1𝑜=ω
33 32 oveq1i ω𝑜1𝑜+𝑜ω=ω+𝑜ω
34 28 30 33 3eqtri ω𝑜2𝑜=ω+𝑜ω
35 26 34 neeq12i 2𝑜𝑜ωω𝑜2𝑜ωω+𝑜ω
36 25 35 mpbir 2𝑜𝑜ωω𝑜2𝑜
37 36 neii ¬2𝑜𝑜ω=ω𝑜2𝑜
38 2on 2𝑜On
39 oveq2 b=ω2𝑜𝑜b=2𝑜𝑜ω
40 oveq1 b=ωb𝑜2𝑜=ω𝑜2𝑜
41 39 40 eqeq12d b=ω2𝑜𝑜b=b𝑜2𝑜2𝑜𝑜ω=ω𝑜2𝑜
42 41 notbid b=ω¬2𝑜𝑜b=b𝑜2𝑜¬2𝑜𝑜ω=ω𝑜2𝑜
43 42 rspcev ωOn¬2𝑜𝑜ω=ω𝑜2𝑜bOn¬2𝑜𝑜b=b𝑜2𝑜
44 4 43 mpan ¬2𝑜𝑜ω=ω𝑜2𝑜bOn¬2𝑜𝑜b=b𝑜2𝑜
45 oveq1 a=2𝑜a𝑜b=2𝑜𝑜b
46 oveq2 a=2𝑜b𝑜a=b𝑜2𝑜
47 45 46 eqeq12d a=2𝑜a𝑜b=b𝑜a2𝑜𝑜b=b𝑜2𝑜
48 47 notbid a=2𝑜¬a𝑜b=b𝑜a¬2𝑜𝑜b=b𝑜2𝑜
49 48 rexbidv a=2𝑜bOn¬a𝑜b=b𝑜abOn¬2𝑜𝑜b=b𝑜2𝑜
50 49 rspcev 2𝑜OnbOn¬2𝑜𝑜b=b𝑜2𝑜aOnbOn¬a𝑜b=b𝑜a
51 38 44 50 sylancr ¬2𝑜𝑜ω=ω𝑜2𝑜aOnbOn¬a𝑜b=b𝑜a
52 37 51 ax-mp aOnbOn¬a𝑜b=b𝑜a
53 1onn 1𝑜ω
54 21 53 pm3.2i ωOnωOnω1𝑜ω
55 4 31 mp1i ωOnωOnω1𝑜ωω𝑜1𝑜=ω
56 omordi ωOnωOnω1𝑜ωω𝑜1𝑜ω𝑜ω
57 56 imp ωOnωOnω1𝑜ωω𝑜1𝑜ω𝑜ω
58 55 57 eqeltrrd ωOnωOnω1𝑜ωωω𝑜ω
59 elneq ωω𝑜ωωω𝑜ω
60 54 58 59 mp2b ωω𝑜ω
61 2onn 2𝑜ω
62 1oex 1𝑜V
63 62 prid2 1𝑜1𝑜
64 df2o3 2𝑜=1𝑜
65 63 64 eleqtrri 1𝑜2𝑜
66 nnoeomeqom 2𝑜ω1𝑜2𝑜2𝑜𝑜ω=ω
67 61 65 66 mp2an 2𝑜𝑜ω=ω
68 27 oveq2i ω𝑜2𝑜=ω𝑜suc1𝑜
69 oesuc ωOn1𝑜Onω𝑜suc1𝑜=ω𝑜1𝑜𝑜ω
70 4 3 69 mp2an ω𝑜suc1𝑜=ω𝑜1𝑜𝑜ω
71 oe1 ωOnω𝑜1𝑜=ω
72 4 71 ax-mp ω𝑜1𝑜=ω
73 72 oveq1i ω𝑜1𝑜𝑜ω=ω𝑜ω
74 68 70 73 3eqtri ω𝑜2𝑜=ω𝑜ω
75 67 74 neeq12i 2𝑜𝑜ωω𝑜2𝑜ωω𝑜ω
76 60 75 mpbir 2𝑜𝑜ωω𝑜2𝑜
77 76 neii ¬2𝑜𝑜ω=ω𝑜2𝑜
78 oveq2 b=ω2𝑜𝑜b=2𝑜𝑜ω
79 oveq1 b=ωb𝑜2𝑜=ω𝑜2𝑜
80 78 79 eqeq12d b=ω2𝑜𝑜b=b𝑜2𝑜2𝑜𝑜ω=ω𝑜2𝑜
81 80 notbid b=ω¬2𝑜𝑜b=b𝑜2𝑜¬2𝑜𝑜ω=ω𝑜2𝑜
82 81 rspcev ωOn¬2𝑜𝑜ω=ω𝑜2𝑜bOn¬2𝑜𝑜b=b𝑜2𝑜
83 4 82 mpan ¬2𝑜𝑜ω=ω𝑜2𝑜bOn¬2𝑜𝑜b=b𝑜2𝑜
84 oveq1 a=2𝑜a𝑜b=2𝑜𝑜b
85 oveq2 a=2𝑜b𝑜a=b𝑜2𝑜
86 84 85 eqeq12d a=2𝑜a𝑜b=b𝑜a2𝑜𝑜b=b𝑜2𝑜
87 86 notbid a=2𝑜¬a𝑜b=b𝑜a¬2𝑜𝑜b=b𝑜2𝑜
88 87 rexbidv a=2𝑜bOn¬a𝑜b=b𝑜abOn¬2𝑜𝑜b=b𝑜2𝑜
89 88 rspcev 2𝑜OnbOn¬2𝑜𝑜b=b𝑜2𝑜aOnbOn¬a𝑜b=b𝑜a
90 38 83 89 sylancr ¬2𝑜𝑜ω=ω𝑜2𝑜aOnbOn¬a𝑜b=b𝑜a
91 77 90 ax-mp aOnbOn¬a𝑜b=b𝑜a
92 18 52 91 3pm3.2i aOnbOn¬a+𝑜b=b+𝑜aaOnbOn¬a𝑜b=b𝑜aaOnbOn¬a𝑜b=b𝑜a