Metamath Proof Explorer


Theorem odd2np1lem

Description: Lemma for odd2np1 . (Contributed by Scott Fenton, 3-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion odd2np1lem N0n2n+1=Nkk2=N

Proof

Step Hyp Ref Expression
1 eqeq2 j=02n+1=j2n+1=0
2 1 rexbidv j=0n2n+1=jn2n+1=0
3 eqeq2 j=0k2=jk2=0
4 3 rexbidv j=0kk2=jkk2=0
5 2 4 orbi12d j=0n2n+1=jkk2=jn2n+1=0kk2=0
6 eqeq2 j=m2n+1=j2n+1=m
7 6 rexbidv j=mn2n+1=jn2n+1=m
8 oveq2 n=x2n=2x
9 8 oveq1d n=x2n+1=2x+1
10 9 eqeq1d n=x2n+1=m2x+1=m
11 10 cbvrexvw n2n+1=mx2x+1=m
12 7 11 bitrdi j=mn2n+1=jx2x+1=m
13 eqeq2 j=mk2=jk2=m
14 13 rexbidv j=mkk2=jkk2=m
15 oveq1 k=yk2=y2
16 15 eqeq1d k=yk2=my2=m
17 16 cbvrexvw kk2=myy2=m
18 14 17 bitrdi j=mkk2=jyy2=m
19 12 18 orbi12d j=mn2n+1=jkk2=jx2x+1=myy2=m
20 eqeq2 j=m+12n+1=j2n+1=m+1
21 20 rexbidv j=m+1n2n+1=jn2n+1=m+1
22 eqeq2 j=m+1k2=jk2=m+1
23 22 rexbidv j=m+1kk2=jkk2=m+1
24 21 23 orbi12d j=m+1n2n+1=jkk2=jn2n+1=m+1kk2=m+1
25 eqeq2 j=N2n+1=j2n+1=N
26 25 rexbidv j=Nn2n+1=jn2n+1=N
27 eqeq2 j=Nk2=jk2=N
28 27 rexbidv j=Nkk2=jkk2=N
29 26 28 orbi12d j=Nn2n+1=jkk2=jn2n+1=Nkk2=N
30 0z 0
31 2cn 2
32 31 mul02i 02=0
33 oveq1 k=0k2=02
34 33 eqeq1d k=0k2=002=0
35 34 rspcev 002=0kk2=0
36 30 32 35 mp2an kk2=0
37 36 olci n2n+1=0kk2=0
38 orcom x2x+1=myy2=myy2=mx2x+1=m
39 zcn yy
40 mulcom y2y2=2y
41 39 31 40 sylancl yy2=2y
42 41 adantl m0yy2=2y
43 42 eqeq1d m0yy2=m2y=m
44 eqid 2y+1=2y+1
45 oveq2 n=y2n=2y
46 45 oveq1d n=y2n+1=2y+1
47 46 eqeq1d n=y2n+1=2y+12y+1=2y+1
48 47 rspcev y2y+1=2y+1n2n+1=2y+1
49 44 48 mpan2 yn2n+1=2y+1
50 oveq1 2y=m2y+1=m+1
51 50 eqeq2d 2y=m2n+1=2y+12n+1=m+1
52 51 rexbidv 2y=mn2n+1=2y+1n2n+1=m+1
53 49 52 syl5ibcom y2y=mn2n+1=m+1
54 53 adantl m0y2y=mn2n+1=m+1
55 43 54 sylbid m0yy2=mn2n+1=m+1
56 55 rexlimdva m0yy2=mn2n+1=m+1
57 peano2z xx+1
58 zcn xx
59 mulcom x2x2=2x
60 31 59 mpan2 xx2=2x
61 31 mullidi 12=2
62 61 a1i x12=2
63 60 62 oveq12d xx2+12=2x+2
64 df-2 2=1+1
65 64 oveq2i 2x+2=2x+1+1
66 63 65 eqtrdi xx2+12=2x+1+1
67 ax-1cn 1
68 adddir x12x+12=x2+12
69 67 31 68 mp3an23 xx+12=x2+12
70 mulcl 2x2x
71 31 70 mpan x2x
72 addass 2x112x+1+1=2x+1+1
73 67 67 72 mp3an23 2x2x+1+1=2x+1+1
74 71 73 syl x2x+1+1=2x+1+1
75 66 69 74 3eqtr4d xx+12=2x+1+1
76 58 75 syl xx+12=2x+1+1
77 76 adantl m0xx+12=2x+1+1
78 oveq1 k=x+1k2=x+12
79 78 eqeq1d k=x+1k2=2x+1+1x+12=2x+1+1
80 79 rspcev x+1x+12=2x+1+1kk2=2x+1+1
81 57 77 80 syl2an2 m0xkk2=2x+1+1
82 oveq1 2x+1=m2x+1+1=m+1
83 82 eqeq2d 2x+1=mk2=2x+1+1k2=m+1
84 83 rexbidv 2x+1=mkk2=2x+1+1kk2=m+1
85 81 84 syl5ibcom m0x2x+1=mkk2=m+1
86 85 rexlimdva m0x2x+1=mkk2=m+1
87 56 86 orim12d m0yy2=mx2x+1=mn2n+1=m+1kk2=m+1
88 38 87 biimtrid m0x2x+1=myy2=mn2n+1=m+1kk2=m+1
89 5 19 24 29 37 88 nn0ind N0n2n+1=Nkk2=N