Metamath Proof Explorer


Theorem oddge22np1

Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion oddge22np1 N 2 ¬ 2 N n 2 n + 1 = N

Proof

Step Hyp Ref Expression
1 eleq1 2 n + 1 = N 2 n + 1 2 N 2
2 nn0z n 0 n
3 2 adantl 2 n + 1 2 n 0 n
4 eluz2 2 n + 1 2 2 2 n + 1 2 2 n + 1
5 2re 2
6 5 a1i n 0 2
7 1red n 0 1
8 2nn0 2 0
9 8 a1i n 0 2 0
10 id n 0 n 0
11 9 10 nn0mulcld n 0 2 n 0
12 11 nn0red n 0 2 n
13 6 7 12 lesubaddd n 0 2 1 2 n 2 2 n + 1
14 2m1e1 2 1 = 1
15 14 breq1i 2 1 2 n 1 2 n
16 nn0re n 0 n
17 2rp 2 +
18 17 a1i n 0 2 +
19 7 16 18 ledivmuld n 0 1 2 n 1 2 n
20 halfgt0 0 < 1 2
21 0red n 0 0
22 halfre 1 2
23 22 a1i n 0 1 2
24 ltletr 0 1 2 n 0 < 1 2 1 2 n 0 < n
25 21 23 16 24 syl3anc n 0 0 < 1 2 1 2 n 0 < n
26 20 25 mpani n 0 1 2 n 0 < n
27 19 26 sylbird n 0 1 2 n 0 < n
28 15 27 syl5bi n 0 2 1 2 n 0 < n
29 13 28 sylbird n 0 2 2 n + 1 0 < n
30 29 com12 2 2 n + 1 n 0 0 < n
31 30 3ad2ant3 2 2 n + 1 2 2 n + 1 n 0 0 < n
32 4 31 sylbi 2 n + 1 2 n 0 0 < n
33 32 imp 2 n + 1 2 n 0 0 < n
34 elnnz n n 0 < n
35 3 33 34 sylanbrc 2 n + 1 2 n 0 n
36 35 ex 2 n + 1 2 n 0 n
37 1 36 syl6bir 2 n + 1 = N N 2 n 0 n
38 37 com13 n 0 N 2 2 n + 1 = N n
39 38 impcom N 2 n 0 2 n + 1 = N n
40 39 pm4.71rd N 2 n 0 2 n + 1 = N n 2 n + 1 = N
41 40 bicomd N 2 n 0 n 2 n + 1 = N 2 n + 1 = N
42 41 rexbidva N 2 n 0 n 2 n + 1 = N n 0 2 n + 1 = N
43 nnssnn0 0
44 rexss 0 n 2 n + 1 = N n 0 n 2 n + 1 = N
45 43 44 mp1i N 2 n 2 n + 1 = N n 0 n 2 n + 1 = N
46 eluzge2nn0 N 2 N 0
47 oddnn02np1 N 0 ¬ 2 N n 0 2 n + 1 = N
48 46 47 syl N 2 ¬ 2 N n 0 2 n + 1 = N
49 42 45 48 3bitr4rd N 2 ¬ 2 N n 2 n + 1 = N