Metamath Proof Explorer


Theorem oege2

Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of Schloeder p. 10. See oeworde . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oege2 AOn1𝑜ABOnBA𝑜B

Proof

Step Hyp Ref Expression
1 2on 2𝑜On
2 1oex 1𝑜V
3 2 prid2 1𝑜1𝑜
4 df2o3 2𝑜=1𝑜
5 3 4 eleqtrri 1𝑜2𝑜
6 ondif2 2𝑜On2𝑜2𝑜On1𝑜2𝑜
7 1 5 6 mpbir2an 2𝑜On2𝑜
8 oeworde 2𝑜On2𝑜BOnB2𝑜𝑜B
9 7 8 mpan BOnB2𝑜𝑜B
10 9 adantl AOn1𝑜ABOnB2𝑜𝑜B
11 df-2o 2𝑜=suc1𝑜
12 onsucss AOn1𝑜Asuc1𝑜A
13 12 imp AOn1𝑜Asuc1𝑜A
14 13 adantr AOn1𝑜ABOnsuc1𝑜A
15 11 14 eqsstrid AOn1𝑜ABOn2𝑜A
16 simpll AOn1𝑜ABOnAOn
17 onsseleq 2𝑜OnAOn2𝑜A2𝑜A2𝑜=A
18 1 16 17 sylancr AOn1𝑜ABOn2𝑜A2𝑜A2𝑜=A
19 oewordri AOnBOn2𝑜A2𝑜𝑜BA𝑜B
20 19 adantlr AOn1𝑜ABOn2𝑜A2𝑜𝑜BA𝑜B
21 oveq1 2𝑜=A2𝑜𝑜B=A𝑜B
22 ssid A𝑜BA𝑜B
23 21 22 eqsstrdi 2𝑜=A2𝑜𝑜BA𝑜B
24 23 a1i AOn1𝑜ABOn2𝑜=A2𝑜𝑜BA𝑜B
25 20 24 jaod AOn1𝑜ABOn2𝑜A2𝑜=A2𝑜𝑜BA𝑜B
26 18 25 sylbid AOn1𝑜ABOn2𝑜A2𝑜𝑜BA𝑜B
27 15 26 mpd AOn1𝑜ABOn2𝑜𝑜BA𝑜B
28 10 27 sstrd AOn1𝑜ABOnBA𝑜B