Description: Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of Schloeder p. 10. See oeworde . (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oege2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on | |
|
2 | 1oex | |
|
3 | 2 | prid2 | |
4 | df2o3 | |
|
5 | 3 4 | eleqtrri | |
6 | ondif2 | |
|
7 | 1 5 6 | mpbir2an | |
8 | oeworde | |
|
9 | 7 8 | mpan | |
10 | 9 | adantl | |
11 | df-2o | |
|
12 | onsucss | |
|
13 | 12 | imp | |
14 | 13 | adantr | |
15 | 11 14 | eqsstrid | |
16 | simpll | |
|
17 | onsseleq | |
|
18 | 1 16 17 | sylancr | |
19 | oewordri | |
|
20 | 19 | adantlr | |
21 | oveq1 | |
|
22 | ssid | |
|
23 | 21 22 | eqsstrdi | |
24 | 23 | a1i | |
25 | 20 24 | jaod | |
26 | 18 25 | sylbid | |
27 | 15 26 | mpd | |
28 | 10 27 | sstrd | |