Metamath Proof Explorer


Theorem oelim2

Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of Mendelson p. 250. (Contributed by NM, 6-Jan-2005)

Ref Expression
Assertion oelim2 A On B C Lim B A 𝑜 B = x B 1 𝑜 A 𝑜 x

Proof

Step Hyp Ref Expression
1 limelon B C Lim B B On
2 0ellim Lim B B
3 2 adantl B C Lim B B
4 oe0m1 B On B 𝑜 B =
5 4 biimpa B On B 𝑜 B =
6 1 3 5 syl2anc B C Lim B 𝑜 B =
7 eldif x B 1 𝑜 x B ¬ x 1 𝑜
8 limord Lim B Ord B
9 ordelon Ord B x B x On
10 8 9 sylan Lim B x B x On
11 on0eln0 x On x x
12 el1o x 1 𝑜 x =
13 12 necon3bbii ¬ x 1 𝑜 x
14 11 13 bitr4di x On x ¬ x 1 𝑜
15 oe0m1 x On x 𝑜 x =
16 15 biimpd x On x 𝑜 x =
17 14 16 sylbird x On ¬ x 1 𝑜 𝑜 x =
18 10 17 syl Lim B x B ¬ x 1 𝑜 𝑜 x =
19 18 impr Lim B x B ¬ x 1 𝑜 𝑜 x =
20 7 19 sylan2b Lim B x B 1 𝑜 𝑜 x =
21 20 iuneq2dv Lim B x B 1 𝑜 𝑜 x = x B 1 𝑜
22 df-1o 1 𝑜 = suc
23 limsuc Lim B B suc B
24 2 23 mpbid Lim B suc B
25 22 24 eqeltrid Lim B 1 𝑜 B
26 1on 1 𝑜 On
27 26 onirri ¬ 1 𝑜 1 𝑜
28 eldif 1 𝑜 B 1 𝑜 1 𝑜 B ¬ 1 𝑜 1 𝑜
29 25 27 28 sylanblrc Lim B 1 𝑜 B 1 𝑜
30 ne0i 1 𝑜 B 1 𝑜 B 1 𝑜
31 iunconst B 1 𝑜 x B 1 𝑜 =
32 29 30 31 3syl Lim B x B 1 𝑜 =
33 21 32 eqtrd Lim B x B 1 𝑜 𝑜 x =
34 33 adantl B C Lim B x B 1 𝑜 𝑜 x =
35 6 34 eqtr4d B C Lim B 𝑜 B = x B 1 𝑜 𝑜 x
36 oveq1 A = A 𝑜 B = 𝑜 B
37 oveq1 A = A 𝑜 x = 𝑜 x
38 37 iuneq2d A = x B 1 𝑜 A 𝑜 x = x B 1 𝑜 𝑜 x
39 36 38 eqeq12d A = A 𝑜 B = x B 1 𝑜 A 𝑜 x 𝑜 B = x B 1 𝑜 𝑜 x
40 35 39 syl5ibr A = B C Lim B A 𝑜 B = x B 1 𝑜 A 𝑜 x
41 40 impcom B C Lim B A = A 𝑜 B = x B 1 𝑜 A 𝑜 x
42 oelim A On B C Lim B A A 𝑜 B = y B A 𝑜 y
43 limsuc Lim B y B suc y B
44 43 biimpa Lim B y B suc y B
45 nsuceq0 suc y
46 dif1o suc y B 1 𝑜 suc y B suc y
47 44 45 46 sylanblrc Lim B y B suc y B 1 𝑜
48 47 ex Lim B y B suc y B 1 𝑜
49 48 ad2antlr A On Lim B A y B suc y B 1 𝑜
50 sssucid y suc y
51 ordelon Ord B y B y On
52 8 51 sylan Lim B y B y On
53 suceloni y On suc y On
54 52 53 jccir Lim B y B y On suc y On
55 id y On suc y On A On y On suc y On A On
56 55 3expa y On suc y On A On y On suc y On A On
57 56 ancoms A On y On suc y On y On suc y On A On
58 54 57 sylan2 A On Lim B y B y On suc y On A On
59 58 anassrs A On Lim B y B y On suc y On A On
60 oewordi y On suc y On A On A y suc y A 𝑜 y A 𝑜 suc y
61 59 60 sylan A On Lim B y B A y suc y A 𝑜 y A 𝑜 suc y
62 61 an32s A On Lim B A y B y suc y A 𝑜 y A 𝑜 suc y
63 50 62 mpi A On Lim B A y B A 𝑜 y A 𝑜 suc y
64 63 ex A On Lim B A y B A 𝑜 y A 𝑜 suc y
65 49 64 jcad A On Lim B A y B suc y B 1 𝑜 A 𝑜 y A 𝑜 suc y
66 oveq2 x = suc y A 𝑜 x = A 𝑜 suc y
67 66 sseq2d x = suc y A 𝑜 y A 𝑜 x A 𝑜 y A 𝑜 suc y
68 67 rspcev suc y B 1 𝑜 A 𝑜 y A 𝑜 suc y x B 1 𝑜 A 𝑜 y A 𝑜 x
69 65 68 syl6 A On Lim B A y B x B 1 𝑜 A 𝑜 y A 𝑜 x
70 69 ralrimiv A On Lim B A y B x B 1 𝑜 A 𝑜 y A 𝑜 x
71 iunss2 y B x B 1 𝑜 A 𝑜 y A 𝑜 x y B A 𝑜 y x B 1 𝑜 A 𝑜 x
72 70 71 syl A On Lim B A y B A 𝑜 y x B 1 𝑜 A 𝑜 x
73 difss B 1 𝑜 B
74 iunss1 B 1 𝑜 B x B 1 𝑜 A 𝑜 x x B A 𝑜 x
75 73 74 ax-mp x B 1 𝑜 A 𝑜 x x B A 𝑜 x
76 oveq2 x = y A 𝑜 x = A 𝑜 y
77 76 cbviunv x B A 𝑜 x = y B A 𝑜 y
78 75 77 sseqtri x B 1 𝑜 A 𝑜 x y B A 𝑜 y
79 78 a1i A On Lim B A x B 1 𝑜 A 𝑜 x y B A 𝑜 y
80 72 79 eqssd A On Lim B A y B A 𝑜 y = x B 1 𝑜 A 𝑜 x
81 80 adantlrl A On B C Lim B A y B A 𝑜 y = x B 1 𝑜 A 𝑜 x
82 42 81 eqtrd A On B C Lim B A A 𝑜 B = x B 1 𝑜 A 𝑜 x
83 41 82 oe0lem A On B C Lim B A 𝑜 B = x B 1 𝑜 A 𝑜 x